函數(shù)y=f(x)在R上的圖象是連續(xù)不斷的一條曲線,并且在.R上單調(diào)遞增,已知P(-1,-1),Q(3,1)是其圖象上的兩點(diǎn),那
么|f(x+1)|<1的解集為( )
A.(0,4)
B.(-2,2)
C.(-∞,0)∪(4,+∞)
D.(-∞,-2)∪(2,+∞)
【答案】分析:解絕對(duì)值不等式|f(x+1)|<1,我們可得f(x+1)的取值范圍,進(jìn)而根據(jù)函數(shù)y=f(x)在R上的圖象是連續(xù)不斷的一條曲線,并且在R上單調(diào)遞增,且P(-1,-1),Q(3,1)是其圖象上的兩點(diǎn),我們易構(gòu)造出x的取值范圍,進(jìn)而得到答案.
解答:解:∵|f(x+1)|<1
∴-1<f(x+1)<1
又∵函數(shù)y=f(x)在R上單調(diào)遞增,且P(-1,-1),Q(3,1)是其圖象上的兩點(diǎn),
∴-1<x+1<3
則-2<x<2
故|f(x+1)|<1的解集為(-2,2)
故選B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是絕對(duì)值不等式的解法,函數(shù)單調(diào)性的應(yīng)用,其中解不等式得到f(x+1)的取值范圍,將問題轉(zhuǎn)化為函數(shù)單調(diào)性的應(yīng)用是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、給出以下四個(gè)命題:
①函數(shù)y=f(x)在R上是增函數(shù)的充分不必要條件是f'(x)>0對(duì)x∈R恒成立;
②等比數(shù)列{an}中,a1=1,a5=16,則a3=±4;
③把函數(shù)y=sin(2-2x)的圖象向左平移1個(gè)單位,則得到的圖象對(duì)應(yīng)的函數(shù)解析式為y=-sin2x;
④若數(shù)列{an}是等比數(shù)列,則a1+a2+a3+a4,a5+a6+a7+a8,a9+a10+a11+a12也一定成等比數(shù)列.
其中正確的是
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)在R上可導(dǎo),滿足xf′(x)>-f(x),若a>b,則下列不等式一定成立的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1
mx+1
(x∈R),且f(3)=
7
9

(1)判斷函數(shù)y=f(x)在R上的單調(diào)性,并用定義法證明;
(2)若f(
1
x-1
)≥f(2)
,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若奇函數(shù)y=f(x)在R上單調(diào)遞增,且f(m2)>-f(m),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)在R上為增函數(shù),且f(2m)>f(-m+9),則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,-3)B、(0,+∞)C、(3,+∞)D、(-∞,-3)∪(3,+∞)

查看答案和解析>>

同步練習(xí)冊答案