若θ∈(
π
2
,π),
a
=(1,sinθ),
b
=(3sinθ,1),且
a
b
,則cos(θ+
π
6
)=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算,兩角和與差的余弦函數(shù)
專題:計(jì)算題,三角函數(shù)的求值,平面向量及應(yīng)用
分析:根據(jù)
a
b
的坐標(biāo)表示,求出sinθ的值,再利用同角的三角函數(shù)關(guān)系求出cosθ的值,計(jì)算cos(θ+
π
6
)即可.
解答: 解:∵
a
=(1,sinθ),
b
=(3sinθ,1),且
a
b
,
∴1-3sinθ•sinθ=0,
即sin2θ=
1
3

又∵θ∈(
π
2
,π),
∴sinθ=
3
3
,cosθ=-
1-sin2θ
=-
6
3
;
∴cos(θ+
π
6
)=cosθcos
π
6
-sinθsin
π
6

=-
6
3
×
3
2
-
3
3
×
1
2

=-
2
2
-
3
6

故答案為:-
2
2
-
3
6
點(diǎn)評(píng):本題考查了平面向量的應(yīng)用問題,也考查了同角的三角函數(shù)關(guān)系以及兩角和的余弦公式的應(yīng)用問題,是綜合性題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},則M∩(CUN)=( 。
A、{0,1,3,4,5}
B、{0,2,3,5}
C、{0,3}
D、{5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知以點(diǎn) M為圓心的圓:(x+1)2+y2=16及定點(diǎn) N(1,0),點(diǎn) P是圓 M上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足
NP
=2
NQ
GQ
NP
=0,令點(diǎn)G的軌跡為C.
(1)求曲線C的方程;
(2)若直線l:y=kx+m與曲線C相交于 A,B兩點(diǎn),且kOA•kOB=-
3
4
,試判斷△AOB的面積是否為定值?若為定值,求出定值;若不為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=lnx-x+4的零點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若某空間幾何體的三視圖如圖所示,則該幾何體的體積是(  )
A、3B、4C、6D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x3-3ax2+8,若f(x)存在唯一的零點(diǎn)x0,且x0<0,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,0)
B、(-∞,0)∪[2,+∞)
C、[0,2]
D、(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=logax+x-b(2<a<3<b<4)的零點(diǎn)所在的一個(gè)區(qū)間是( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P,M分別為線段BD1,B1C1上的點(diǎn),若BP=2PD1,則三棱錐M-PBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,若數(shù)列{an}滿足:a1=i,且(1-i)an+1=(1+i)an,則復(fù)數(shù)a5=(  )
A、-iB、-1C、iD、1

查看答案和解析>>

同步練習(xí)冊(cè)答案