已知拋物線y=x2-(2a-1)x+a2-1與x軸的交點為A、B.
(1)求證:點A、B在原點異側(cè)的充要條件為-1<a<1;
(2)根據(jù)題意,提出一個與充分條件、必要條件、充要條件相關(guān)的問題并作出解答.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由交點在原點的兩側(cè)得兩根之積為負,解不等式求出即可.
解答: 解;(1)設(shè)A(x1,0),B(x2,0),
由題意得:x1•x2=a2-1<0,
解得:-1<a<1.
(2)求證:若y=x2-(2a-1)x+a2-1與x軸有兩個不同交點A,B的充要條件是a<
5
4
,
證明:由題意得:△=(2a-1)2-4(a2-1)=5-4a>0,
解得:a<
5
4
點評:本題是二次函數(shù)的性質(zhì)問題,考察了一元二次方程根與系數(shù)的關(guān)系,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

高三年級某班的所有考生全部參加了“語文”和“數(shù)學(xué)”兩個科目的學(xué)業(yè)水平考試.其中“語文”和“數(shù)學(xué)”的兩科考試成績的數(shù)據(jù)統(tǒng)計如下圖(按[0,10),[10,20),…,[80,90),[90,100)分組)所示,其中“數(shù)學(xué)”科目的成績在[70,80),分數(shù)段的考生有16人.
(1)求該班考生“語文”科目成績在[90,100),分數(shù)段的人數(shù);
(2)根據(jù)數(shù)據(jù)合理估計該班考生“數(shù)學(xué)”科目成績的平均分,并說明理由;
(3)若要從“數(shù)學(xué)”科目分數(shù)在[50,60)和[90,100)之間的試卷中任取兩份分析學(xué)生的答題情況,在抽取的試卷中,求至少有一份分數(shù)在[50,60)之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求拋物線y=x2過點(
5
2
,6)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

物體W的質(zhì)量為50千克,用繩子將物體W懸掛在兩面墻之間,已知兩面墻之間的距離AB=10米(AB為水平線),AC=6米,BC=8米,求AC,BC上所受的力的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用五點法作出函數(shù)y=2sin(2x+
π
3
)的圖象,并指出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x)=ax3+bx2+cx+d(a≠0)滿足以下條件:
①在x=1時有極值;
②曲線y=f(x)在點(0,f(0))處的切線與直線x-3y+2=0垂直.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)設(shè)直線l1:y=kx與函數(shù)f(x)的圖象有三個不同的交點A,B,C,且|AB|=|BC|=5,求直線l的斜率k的值;
(Ⅲ)設(shè)g(x)=6lnx-m,若存在x∈[
1
e
,e],使g(x)<f(x),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,且∠DAB=60°.側(cè)面PAD為正三角形,其所在的平面垂直于底面ABCD,G為AD邊的中點.
(1)求證:BG⊥平面PAD;
(2)求三棱錐G-CDP的體積;
(3)若E為BC邊的中點,能否在棱PC上找到一點F,使平面DEF⊥平面ABCD,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第四象限角,則
α
3
必定不在第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于任意a∈(0,1)∪(1,+∞),函數(shù)f(x)=
.
1-1
1loga(x-1)
.
的反函數(shù)f-1(x)的圖象經(jīng)過的定點的坐標(biāo)是
 

查看答案和解析>>

同步練習(xí)冊答案