數(shù)列{an}滿足a1=1,an+1=3an-4n+2,bn=an-2n,
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{bn}的首項b1及通項公式bn;
(3)求數(shù)列{an}的通項公式an及前n項和Sn
考點:數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由數(shù)列{an}滿足a1=1,an+1=3an-4n+2,bn=an-2n,可證
bn+1
bn
=
an+1-2(n+1)
an-2n
3;
(2)利用(1)和等比數(shù)列的通項公式即可得出.
(3)由(1)(2)可得:an=bn+2n=2n-3n-1.利用等差數(shù)列與等比數(shù)列的前n項和公式即可得出.
解答: (1)證明:∵數(shù)列{an}滿足a1=1,an+1=3an-4n+2,bn=an-2n,
bn+1
bn
=
an+1-2(n+1)
an-2n
=
3an-4n+2-2(n+1)
an-2n
=3,
∴數(shù)列{bn}是等比數(shù)列.
(2)解:∵b1=a1-2=-1.
由(1)可得:bn=-1×3n-1=-3n-1
(3)解:由(1)(2)可得:an=bn+2n=2n-3n-1
∴Sn=
n(n+1)
2
-
3n-1
3-1
=n2+n-
1
2
(3n-1)
點評:本題考查了等差數(shù)列與等比數(shù)列的定義通項公式及其前n項和公式、遞推式的意義,考查了推理能力與計算能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,
3
cosx),
b
=(cosx,cosx),若函數(shù)f(x)=
a
b

(1)若x∈[0,
π
2
],求f(x)得最小值.
(2)求函數(shù)f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,
(1)若a=
3
,b=
2
,B=45°,求角A,C和邊c;
(2)若
cosB
cosC
=-
b
2a+c
,b=
13
,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知關(guān)于x的不等式|ax-1|+|ax-a|≥2(a>0),此不等式的解集為R,求實數(shù)a的取值范圍.
(2)已知實數(shù)m,n,l,x,y,z滿足m2+n2+l2=25,x2+y2+z2=36,mx+ny+lz=30,求表達式
m+n+l
x+y+z
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的方程:x4-2ax2-x+a2-a=0(-0.25≤a<0.75).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin2x,-
3
2
),
b
=(
1
2
,cos2x)設(shè)f(x)=2
a
b

(1)求f(x)的最大值,并求最大值所對應(yīng)的自變量;
(2)令g(x)=
2
π
x2
-x,對任意x1∈[-
π
2
,
π
2
]
,存在x2∈[-
π
2
,
π
2
]
時,使λ•g(x1)=f(x2)成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x2-ax+1在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2,|
b
|=1,(2
a
-3
b
)•(2
a
+
b
)=9.
(Ⅰ)求
a
b
的夾角θ;    
(Ⅱ)求向量
a
在(
a
+
b
)上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將5本不同的書分給3個同學(xué),要求每人至少得1本,則所有不同的分法有
 
種.

查看答案和解析>>

同步練習(xí)冊答案