5.關(guān)于x的一元二次方程x2-2ax+a+2=0在(1,3)內(nèi)有兩個(gè)不同實(shí)根,則a取值范圍為(2,$\frac{11}{5}$).

分析 設(shè)f(x)=x2-2ax+a+2,則f(x)在(1,3)上有兩個(gè)不同實(shí)根,所以f(1)>0,f(3)>0,fmin(x)<0,解不等式組得出答案.

解答 解:設(shè)f(x)=x2-2ax+a+2,
則f(x)在(1,3)上有兩個(gè)不同實(shí)根,
∴$\left\{\begin{array}{l}{f(1)>0}\\{f(3)>0}\\{{f}_{min}(x)<0}\end{array}\right.$,即$\left\{\begin{array}{l}{1-2a+a+2>0}\\{9-6a+a+2>0}\\{\frac{4(a+2)-4{a}^{2}}{4}<0}\end{array}\right.$,
解得2<a<$\frac{11}{5}$.
故答案為(2,$\frac{11}{5}$).

點(diǎn)評(píng) 本題考查了二次函數(shù)的零點(diǎn)與根的關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若以雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左、右焦點(diǎn)和點(diǎn)(1,$\sqrt{2}$)為頂點(diǎn)的三角形為直角三角形,則b等于( 。
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)橢圓$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$的焦點(diǎn)為F1、F2,直線L過(guò)點(diǎn)F1,且與橢圓相交于A,B兩點(diǎn),則△ABF2的周長(zhǎng)為( 。
A.9B.16C.20D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知O是坐標(biāo)原點(diǎn),橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率$e=\frac{{\sqrt{2}}}{2}$,且過(guò)點(diǎn)$P(1,\frac{{\sqrt{2}}}{2})$.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若⊙O是以F1F2為直徑的圓,一直線l:y=kx+m與⊙O相切,并與橢圓交于不同的兩點(diǎn)A、B,當(dāng)$\frac{2}{3}≤\overrightarrow{OA}•\overrightarrow{OB}≤\frac{3}{4}$時(shí),求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,兩個(gè)變量具有相關(guān)關(guān)系的圖是( 。
A.(1)(2)B.(1)(3)C.(2)(4)D.(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知$f(\sqrt{x}-1)=x-2\sqrt{x}$,且f(a)=8,則實(shí)數(shù)a的值是( 。
A.±3B.16C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,角A、B、C對(duì)邊分別是a、b、c,且滿足2$\overrightarrow{AB}$•$\overrightarrow{AC}$=a2-(b-c)2
(Ⅰ)求角A的大。
(Ⅱ)若a=4$\sqrt{3}$,△ABC的面積為4$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足$cosA=\frac{3}{5}$,$\overrightarrow{AB}•\overrightarrow{AC}=3$.則△ABC的面積2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若f(sinx)=1-2sin2x,則$f({\frac{{\sqrt{3}}}{2}})$的值是$-\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案