如圖,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個(gè)矩形草坪,另外△AEF內(nèi)部有一文物保護(hù)區(qū)域不能占用,經(jīng)過(guò)測(cè)量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計(jì)才能使草坪面積最大?
精英家教網(wǎng)
建立如圖示的坐標(biāo)系,則E(30,0)F(0,20),那么線段EF的方程就是
x
30
+
y
20
=1(0≤x≤30)


精英家教網(wǎng)

在線段EF上取點(diǎn)P(m,n),作PQ⊥BC于Q,作PR⊥CD于R,
設(shè)矩形PQCR的面積是S,則S=|PQ||•|PR|=(100-m)(80-n),
又因?yàn)?span mathtag="math" >
m
30
+
n
20
=1(0≤m≤30),所以n=20(1-
m
30
),
故S=(100-m)(80-20+
2
3
m
)=-
2
3
(m-5)2+
18050
3

∵0≤m≤30,∴當(dāng)m=5時(shí)S有最大值,這時(shí)
|EP|
|PF|
=
30-5
5
=
5
1

故當(dāng)矩形廣場(chǎng)的兩邊在BC、CD上,一個(gè)頂點(diǎn)在線段EF上,且這個(gè)頂點(diǎn)分EF成5:1時(shí),廣場(chǎng)的面積最大..
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個(gè)矩形草坪,另外△AEF內(nèi)部有一文物保護(hù)區(qū)域不能占用,經(jīng)過(guò)測(cè)量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計(jì)才能使草坪面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分)如圖2,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個(gè)矩形草坪,另外△AEF內(nèi)部有一文物保護(hù)區(qū)域不能占用,經(jīng)過(guò)測(cè)量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計(jì)才能使草坪面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣東省湛師附中2010屆高三第二次月考(理) 題型:解答題

 

如圖2,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個(gè)矩形草坪,另外△AEF內(nèi)部有一文物保護(hù)區(qū)域不能占用,經(jīng)過(guò)測(cè)量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計(jì)才能使草坪面積最大?

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個(gè)矩形草坪,另外△AEF內(nèi)部有一文物保護(hù)區(qū)域不能占用,經(jīng)過(guò)測(cè)量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計(jì)才能使草坪面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省江門市開(kāi)平市風(fēng)采華僑中學(xué)高一(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個(gè)矩形草坪,另外△AEF內(nèi)部有一文物保護(hù)區(qū)域不能占用,經(jīng)過(guò)測(cè)量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計(jì)才能使草坪面積最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案