設(shè)橢圓的左、右焦點(diǎn)分別為,已知橢圓上的任意一點(diǎn),滿足,過(guò)作垂直于橢圓長(zhǎng)軸的弦長(zhǎng)為3.

(1)求橢圓的方程;
(2)若過(guò)的直線交橢圓于兩點(diǎn),求的取值范圍.
(1)  (2)

試題分析:解:(1)設(shè)點(diǎn),則
,
,又,
,∴橢圓的方程為:
(2)當(dāng)過(guò)直線的斜率不存在時(shí),點(diǎn),則;
當(dāng)過(guò)直線的斜率存在時(shí),設(shè)斜率為,則直線的方程為,設(shè)
   得:


綜合以上情形,得:
點(diǎn)評(píng): 本小題主要考查橢圓的方程、幾何性質(zhì),平面向量的數(shù)量積的坐標(biāo)運(yùn)算,直線與圓錐曲線的位置關(guān)系等基本知識(shí)及推理能力和運(yùn)算能力
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)點(diǎn)P是曲線C:上的動(dòng)點(diǎn),點(diǎn)P到點(diǎn)(0,1)的距離和它到
焦點(diǎn)F的距離之和的最小值為
(1)求曲線C的方程
(2)若點(diǎn)P的橫坐標(biāo)為1,過(guò)P作斜率為的直線交C與另一點(diǎn)Q,交x軸于點(diǎn)M,
過(guò)點(diǎn)Q且與PQ垂直的直線與C交于另一點(diǎn)N,問(wèn)是否存在實(shí)數(shù)k,使得直線MN與曲線C
相切?若存在,求出k的值,若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為

(1)求橢圓方程;
(2)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓O,直線l與橢圓C相交于PQ兩點(diǎn),O為原點(diǎn).
(Ⅰ)若直線l過(guò)橢圓C的左焦點(diǎn),且與圓O交于AB兩點(diǎn),且,求直線l的方程;
(Ⅱ)如圖,若重心恰好在圓上,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)P到點(diǎn)的距離比它到直線的距離大1,則點(diǎn)P滿足的方程為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)雙曲線的右焦點(diǎn)作圓的切線(切點(diǎn)為),交軸于點(diǎn).若為線段的中點(diǎn),則雙曲線的離心率為
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓和雙曲線有相同的焦點(diǎn),則實(shí)數(shù)的值是 (    )
A.B.C.5D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知曲線恰有三個(gè)點(diǎn)到直線距離為,則     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓右頂點(diǎn)到直線的距離為,離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A為橢圓與y軸負(fù)半軸的交點(diǎn),設(shè)直線,是否存在實(shí)數(shù)m,使直線與(Ⅰ)中的橢圓有兩個(gè)不同的交點(diǎn)M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案