【題目】某公司租賃甲、乙兩種設備生產(chǎn)A,B兩類產(chǎn)品,甲種設備每天能生產(chǎn)A類產(chǎn)品5件和B類產(chǎn)品10件,乙種設備每天能生產(chǎn)A類產(chǎn)品6件和B類產(chǎn)品20件。已知設備甲每天的租賃費為200元,設備乙每天的租賃費為300元,現(xiàn)該公司至少要生產(chǎn)A類產(chǎn)品50件,B類產(chǎn)品140件,所需租賃費最少為多少元?

【答案】2300

【解析】試題分析:設甲種設備需要生產(chǎn)x天,乙種設備需要生產(chǎn)y天,該公司所需租賃費為z元,則,(2分)

甲、乙兩種設備生產(chǎn)A,B兩類產(chǎn)品的情況為下表所示:

產(chǎn)品
設備

A類產(chǎn)品
(件)(≥50

B類產(chǎn)品
(件)(≥140

租賃費
(元)

甲設備

5

10

200

乙設備

6

20

300

4分)

則滿足的關(guān)系為

作出不等式表示的平面區(qū)域,

對應的直線過兩直線的交點(4,5)時,目標函數(shù)取得最低為2300元。(12分)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知常數(shù),函數(shù).

(1)討論在區(qū)間上的單調(diào)性;

(2)若存在兩個極值點,且,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0且a≠1)的圖象經(jīng)過點(2, ).
(1)比較f(2)與f(b2+2)的大;
(2)求函數(shù)g(x)=a (x≥0)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下幾個命題中真命題的序號為
①在空間中,m、n是兩條不重合的直線,α、β是兩個不重合的平面,如果α⊥β,α∩β=n,m⊥n,那么m⊥β;
②相關(guān)系數(shù)r的絕對值越接近于1,兩個隨機變量的線性相關(guān)性越強;
③用秦九昭算法求多項式f(x)=208+9x2+6x4+x6在x=﹣4時,v2的值為22;
④過拋物線y2=4x的焦點作直線與拋物線相交于A、B兩點,則使它們的橫坐標之和等于4的直線有且只有兩條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是從成都某中學參加高三體育考試的學生中抽出的40名學生體育成績(均為整數(shù))的頻率分布直方圖,該直方圖恰好缺少了成績在區(qū)間[70,80)內(nèi)的圖形,根據(jù)圖形的信息,回答下列問題:
(1)求成績在區(qū)間[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖,并估計這次考試的及格率(60分及以上為及格);
(2)從成績在[80,100]內(nèi)的學生中選出三人,記在90分以上(含90分)的人數(shù)為X,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)設,當時,,求的最大值;

(3)已知,估計的近似值(精確到0.001)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線上有一個動點,過點作直線垂直于軸,動點上,且滿足為坐標原點),記點的軌跡為.

(I)求曲線的方程;

(II)若直線是曲線的一條切線,當點到直線的距離最短時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于x的不等式 >1+ (其中k∈R,k≠0).
(1)若x=3在上述不等式的解集中,試確定k的取值范圍;
(2)若k>1時,上述不等式的解集是x∈(3,+∞),求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項和Sn=an﹣1,則關(guān)于數(shù)列{an}的下列說法中,正確的個數(shù)有(
①一定是等比數(shù)列,但不可能是等差數(shù)列
②一定是等差數(shù)列,但不可能是等比數(shù)列
③可能是等比數(shù)列,也可能是等差數(shù)列
④可能既不是等差數(shù)列,又不是等比數(shù)列
⑤可能既是等差數(shù)列,又是等比數(shù)列.
A.4
B.3
C.2
D.1

查看答案和解析>>

同步練習冊答案