如圖,四邊形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥=AD,BE∥=FA,G、H分別為FA、FD的中點(diǎn).
(1)證明:四邊形BCHG是平行四邊形.
(2)C、D、F、E四點(diǎn)是否共面?為什么?
(1)見解析(2)四點(diǎn)共面
【解析】(1)證明:由已知FG=GA,FH=HD,可得GH∥=AD.又BC∥=AD,∴GH∥=BC.∴四邊形BCHG為平行四邊形.
(2)【解析】
(解法1)由BE∥=AF,G為FA中點(diǎn)知,BE∥=FG,∴四邊形BEFG為平行四邊形.∴EF∥BG.由(1)知BG∥CH,∴EF∥CH,∴EF與CH共面.又D∈FH,∴C、D、F、E四點(diǎn)共面.
(解法2)如圖,延長FE、DC分別與AB交于點(diǎn)M、M′,∵BE∥=AF,∴B為MA中點(diǎn).
∵BC∥= AD,∴B為M′A中點(diǎn).∴M與M′重合,即FE與DC交于點(diǎn)M(M′).∴C、D、F、E四點(diǎn)共面
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第5課時(shí)練習(xí)卷(解析版) 題型:填空題
已知圓錐的側(cè)面展開圖是一個(gè)半徑為3cm,圓心角為的扇形,則此圓錐的高為________cm.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第3課時(shí)練習(xí)卷(解析版) 題型:填空題
已知A、B、C是不共線的三點(diǎn),直線m垂直于直線AB和AC,直線n垂直于直線BC和AC,則直線m,n的位置關(guān)系是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第2課時(shí)練習(xí)卷(解析版) 題型:填空題
過直線l外一點(diǎn)P,作與l平行的平面,則這樣的平面有________個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第1課時(shí)練習(xí)卷(解析版) 題型:填空題
如圖是正四面體的平面展開圖,G,H,M,N分別為DE,BE,EF,EC的中點(diǎn),在這個(gè)正四面體中:
①GH與EF平行;
②BD與MN為異面直線;
③GH與MN成60°角;
④DE與MN垂直.
以上四個(gè)命題中,正確命題的是________.(填序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第1課時(shí)練習(xí)卷(解析版) 題型:填空題
有下列命題:①空間四點(diǎn)共面,則其中必有三點(diǎn)共線;②空間四點(diǎn)不共面,則其中任何三點(diǎn)不共線;③空間四點(diǎn)中有三點(diǎn)共線,則此四點(diǎn)共面;④空間四點(diǎn)中任何三點(diǎn)不共線,則此四點(diǎn)不共面.其中正確的命題是________.(填序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第6課時(shí)練習(xí)卷(解析版) 題型:填空題
等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S10=0,S15=25,則nSn的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第5課時(shí)練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}前n項(xiàng)和為Sn,且a2an=S2+Sn對一切正整數(shù)都成立.
(1)求a1,a2的值;
(2)設(shè)a1>0,數(shù)列前n項(xiàng)和為Tn,當(dāng)n為何值時(shí),Tn最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:解答題
在數(shù)列{an}中,a1=2,an+1=4an-3n+1,n∈N*.
(1)求證:數(shù)列{an-n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn;
(3)求證:不等式Sn+1≤4Sn對任意n∈N*皆成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com