已知三條直線l1:2x-y+a=0(a>0)、直線l2:-4x+2y+1=0和直線l3:x+y-1=0,且l1與l2的距離是
(1)求a的值;
(2)求l3到l1的角θ;
(3)能否找到一點P,使得P點同時滿足下列三個條件:①P是第一象限的點:②P點到l1的距離是P點到l2的距離的;③P點到l1的距離與P點到l3的距離之比是∶;若能,求P點坐標(biāo);若不能,說明理由.
思路 求解本題的必需工具是三個公式:平行直線間的距離公式,直線到直線的“到角”公式和點到直線的距離公式.其中第(3)問應(yīng)解一個由①、②、③建立起來的方程組. 解答 (1)l2即2x-y-=0, ∴l1與l2的距離d==, ∴=. ∴|a+|=, ∵a>0,∴a=3, (2)由(1),l1即2x-y+3=0,∴k1=2, 而l3的斜率k3=-1, ∴tanθ===-3. ∵0≤θ≤π,∴θ=π-arctan3; (3)設(shè)點P(x0,y0),若P點滿足條件②,則P點在與l1、l2平行的直線:2x-y+c=0上. 且=,即c=,或c=, ∴2x0-y0+=0,或2x0-y0+=0; 若P點滿足條件③,由點到直線的距離公式, 有=· 即|2x0-y0+3|=|x0+y0-1|, ∴x0-2y0+4=0,或3x0+2=0; 由P在第一象限,∴3x0+2=0不可能. 聯(lián)立方程2x0-y0+=0和x0-2y0+4=0, 解得 由得, ∴P(,)即為同時滿足三個條件的點. |
科目:高中數(shù)學(xué) 來源: 題型:
7 |
10 |
5 |
1 |
2 |
2 |
5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
7
| ||
10 |
1 |
2 |
2 |
5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知三條直線l1:2x-y+a=0(a>0),直線l2:-4x+2y+1=0和直線l3:x+y-1=0,且l1與l2的距離是.
(1)求a的值;w.w.w.k.s.5.u.c.o.m
(2)求l3到l1的角θ;
(3)能否找到一點P,使得P點同時滿足下列三個條件:①P是第一象限的點;②P點到l1的距離是P點到l2的距離的;③P點到l1的距離與P點到l3的距離之比是∶?若能,求P點坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求實數(shù)a的值;
(2)能否找到一點P,使得P點同時滿足下列三個條件:①P是第一象限的點;②P點到直線l1的距離是P點到直線l2的距離的;③P點到直線l1的距離與P點到直線l3的距離之比為∶.若能,求出點P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知三條直線l1:2x-y+3=0,直線l2:-4x+2y+1=0和直線l3:x+y-1=0.能否找到一點P,使得P點同時滿足下列三個條件:(1)P是第一象限的點;(2)P點到l1的距離是P點到l2的距離的;(3)P點到l1的距離與P點到l3的距離之比是.若能,求P點坐標(biāo);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com