(文科)美國職業(yè)籃球聯(lián)賽(NBA)總決賽在甲、乙兩隊之間角逐,采用七局四勝制,即有一隊勝四場,則此隊獲勝,且比賽結束.在每場比賽中,甲隊獲勝的概率是,乙隊獲勝的概率是.根據(jù)以往資料統(tǒng)計,每場比賽組織者可獲門票收入為300萬元.兩隊決出勝負后,問:
(1)組織者在此決賽中獲門票收入為1200萬元的概率是多少?
(2)組織者在此決賽中獲門票收入不低于1800萬元的概率是多少?
【答案】分析:(1)獲門票收入為1200萬元,即比賽進行了四場后結束,也就是甲或乙連勝四局,由于每局比賽相互獨立,故可用獨立事件同時發(fā)生的概率計算連勝四局的概率,最后由互斥事件有一個發(fā)生的概率計算獲門票收入為1200萬元的概率
(2)決賽中獲門票收入不低于1800萬元,包括兩個互斥事件,即比賽6局結束比賽和比賽7局結束比賽,比賽6局結束比賽即前5局甲(或乙)贏3局,最后一局甲(或乙)勝;比賽7局結束比賽,即前6局甲乙互贏3局,分別計算概率即可
解答:解:(1)設A={比賽4場甲隊獲勝},B={比賽4場乙隊獲勝},獲門票收入為1200萬元的概率為P
則P=P(A+B)=P(A)+P(B)=+=
(2)設C={比賽6場結束比賽},D={比賽7場結束比賽},E={決賽中獲門票收入不低于1800萬元}
則P(E)=P(C)+P(D)=c53×+++=
點評:本題考察了概率應用問題,解題時要熟練的分析概率事件的構成及相互關系,熟練地運用獨立事件同時發(fā)生及互斥事件有一個發(fā)生的概率公式計算概率
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文科)美國職業(yè)籃球聯(lián)賽(NBA)總決賽在甲、乙兩隊之間角逐,采用七局四勝制,即有一隊勝四場,則此隊獲勝,且比賽結束.在每場比賽中,甲隊獲勝的概率是
1
3
,乙隊獲勝的概率是
2
3
.根據(jù)以往資料統(tǒng)計,每場比賽組織者可獲門票收入為300萬元.兩隊決出勝負后,問:
(1)組織者在此決賽中獲門票收入為1200萬元的概率是多少?
(2)組織者在此決賽中獲門票收入不低于1800萬元的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(文科)美國職業(yè)籃球聯(lián)賽(NBA)總決賽在甲、乙兩隊之間角逐,采用七局四勝制,即有一隊勝四場,則此隊獲勝,且比賽結束.在每場比賽中,甲隊獲勝的概率是
1
3
,乙隊獲勝的概率是
2
3
.根據(jù)以往資料統(tǒng)計,每場比賽組織者可獲門票收入為300萬元.兩隊決出勝負后,問:
(1)組織者在此決賽中獲門票收入為1200萬元的概率是多少?
(2)組織者在此決賽中獲門票收入不低于1800萬元的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(文科)美國職業(yè)籃球聯(lián)賽(NBA)總決賽在甲、乙兩隊之間角逐,采用七局四勝制,即有一隊勝四場,則此隊獲勝,且比賽結束.在每場比賽中,甲隊獲勝的概率是
1
3
,乙隊獲勝的概率是
2
3
.根據(jù)以往資料統(tǒng)計,每場比賽組織者可獲門票收入為300萬元.兩隊決出勝負后,問:
(1)組織者在此決賽中獲門票收入為1200萬元的概率是多少?
(2)組織者在此決賽中獲門票收入不低于1800萬元的概率是多少?

查看答案和解析>>

同步練習冊答案