【題目】中山某學(xué)校的場(chǎng)室統(tǒng)一使用歐普照明的一種燈管,已知這種燈管使用壽命(單位:月)服從正態(tài)分布,且使用壽命不少于個(gè)月的概率為,使用壽命不少于個(gè)月的概率為.

1)求這種燈管的平均使用壽命;

2)假設(shè)一間課室一次性換上支這種新燈管,使用個(gè)月時(shí)進(jìn)行一次檢查,將已經(jīng)損壞的燈管換下(中途不更換),求至少兩支燈管需要更換的概率.

【答案】(1)18個(gè)月;(2)(寫(xiě)成0.1808也可以).

【解析】試題分析:(1)根據(jù)題意,顯然,結(jié)合正態(tài)分布密度函數(shù)的對(duì)稱(chēng)性可知 ,從而得出每支這種燈管的平均使用壽命;(2)先算出每支燈管使用個(gè)月時(shí)已經(jīng)損壞的概率,假設(shè)使用個(gè)月時(shí)該功能室需要更換的燈管數(shù)量為支,則,獨(dú)立重復(fù)使用概率公式概以及對(duì)事件的概率公式可得出至少兩支燈管需要更換的概率.

試題解析:(1)∵, ,∴

顯然

由正態(tài)分布密度函數(shù)的對(duì)稱(chēng)性可知, ,

即每支這種燈管的平均使用壽命是個(gè)月;

(2)每支燈管使用個(gè)月時(shí)已經(jīng)損壞的概率為,

假設(shè)使用個(gè)月時(shí)該室需更換的燈管數(shù)量為支,則

故至少兩支燈管需要更換的概率

(寫(xiě)成0.1808也可以).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(0)=0,當(dāng)x>0時(shí),
f(x)= .
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x2-1)>-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為

1)求曲線(xiàn)的普通方程和直線(xiàn)的傾斜角;

2)設(shè)點(diǎn),直線(xiàn)和曲線(xiàn)交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率.以?xún)蓚(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形的周長(zhǎng)為8,面積為

(Ⅰ)求橢圓的方程;

(Ⅱ)若點(diǎn)為橢圓上一點(diǎn),直線(xiàn)的方程為,求證:直線(xiàn)與橢圓有且只有一個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),三個(gè)函數(shù)的定義域均為集合.

(1)若恒成立,滿(mǎn)足條件的實(shí)數(shù)組成的集合為,試判斷集合的關(guān)系,并說(shuō)明理由;

(2)記,是否存在,使得對(duì)任意的實(shí)數(shù),函數(shù)有且僅有兩個(gè)零點(diǎn)?若存在,求出滿(mǎn)足條件的最小正整數(shù);若不存在,說(shuō)明理由.(以下數(shù)據(jù)供參考:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正四棱錐中,已知異面直線(xiàn)所成的角為,給出下面三個(gè)命題:

:若,則此四棱錐的側(cè)面積為;

:若分別為的中點(diǎn),則平面;

:若都在球的表面上,則球的表面積是四邊形面積的倍.

在下列命題中,為真命題的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】韓國(guó)民意調(diào)查機(jī)構(gòu)“蓋洛普韓國(guó)”2016年11月公布的民調(diào)結(jié)果顯示,受“閨蜜門(mén)”時(shí)間影響,韓國(guó)總統(tǒng)樸槿惠的民意支持率持續(xù)下跌,在所調(diào)查的1000個(gè)對(duì)象中,年齡在[20,30)的群體有200人,支持率為0%,年齡在[30,40)和[40,50)的群體中,支持率均為3%;年齡在[50,60)和[60,70)的群體中,支持率分別為6%和13%,若在調(diào)查的對(duì)象中,除[20,30)的群體外,其余各年齡層的人數(shù)分布情況如頻率分布直方圖所示,其中最后三組的頻數(shù)構(gòu)成公差為100的等差數(shù)列.

(1)依頻率分布直方圖求出圖中各年齡層的人數(shù)

(2)請(qǐng)依上述支持率完成下表:

年齡分布

是否支持

[30,40)和[40,50)

[50,60)和[60,70)

合計(jì)

支持

不支持

合計(jì)

根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為年齡與支持率有關(guān)?

附表:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.076

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中 參考數(shù)據(jù):125×33=15×275,125×97=25×485)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上不具有單調(diào)性.

(1)求實(shí)數(shù)的取值范圍;

(2)若的導(dǎo)函數(shù),設(shè),試證明對(duì)任意兩個(gè)不相等正數(shù),不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù),其圖象與軸交于, 兩點(diǎn),且.

(Ⅰ)求的取值范圍;

(Ⅱ)證明: 的導(dǎo)函數(shù)).

(Ⅲ)設(shè)點(diǎn)在函數(shù)圖象上,且為等腰直角三角形,記,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案