15.設隨機變量ξ等可能取值1,2,3,4,…,n,如果p(ξ<4)=0.3,則n的值為( 。
A.3B.4C.10D.不能確定

分析 $P(ξ=k)=\frac{1}{n}$(k=1,2,…,n),可得(ξ<4)=0.3=$\frac{3}{n}$,解得n.

解答 解:∵$P(ξ=k)=\frac{1}{n}$(k=1,2,…,n),
p(ξ<4)=0.3=$\frac{3}{n}$,解得n=10.
故選:C.

點評 本題考查了古典概率計算公式、互斥事件的概率計算公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.求滿足下列條件的橢圓的標準方程.
(1)焦點在y軸上,c=6,$e=\frac{2}{3}$;
(2)短軸的一個端點到一個焦點的距離為5,焦點到橢圓中心的距離為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若正三棱錐P-ABC(底面是正三角形,頂點P在底面的射影是△ABC的中心)滿足|$\overrightarrow{PA}$+$\overrightarrow{PB}$|=|$\overrightarrow{AB}$|=4$\sqrt{3}$,則該三棱錐外接球球心O到平面ABC的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知數(shù)列{an}的首項為a1=1,且滿足an+1=$\frac{1}{2}$an+$\frac{1}{{2}^{n}}$,則此數(shù)列的第4項是(  )
A.1B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.如果有窮數(shù)列{an}滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,我們稱其為“對稱數(shù)列”,例如數(shù)列1,2,3,4,3,2,1和1,2,3,4,4,3,2,1都是“對稱數(shù)列”.已知數(shù)列{bn}是項數(shù)不超過2m(m>1,m∈N*)的“對稱數(shù)列”,并使得1,2,22,23,…,2m-1依次為該數(shù)列中連續(xù)的前m項.則數(shù)列{bn}的前2015項和S2015可以是:
①22015-1;     
②22015-2;
③3•2m-1-22m-2016-1;
④3•2m-22m-2016-1;
⑤2m+1-22m-2015-1.
其中正確結(jié)論的序號為①③⑤.(請寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在△ABC中,BC=$\sqrt{5}$,AC=3,sinC=2sinA.
(1)求AB的值;
(2)求cos(A+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若直線y=kx+3與直線y=$\frac{1}{k}$x-5的交點在第一象限,則k的取值范圍是0<k<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.函數(shù)f(x),當x>0有意義且滿足條件f(2)=1,f(xy)=f(x)+f(y),且f(x)是增函數(shù).
(1)求證:f(1)=0;
(2)若f(3)+f(4-8x)>2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.f(x)是奇函數(shù),當x<0時,f(x)=log5(1-x),則f(4)=-1.

查看答案和解析>>

同步練習冊答案