如右圖,A、B是橢圓的頂點(diǎn),F1、F2是兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),且PF1x軸,PF2AB,求此橢圓的離心率.

 

答案:
解析:

解:,由PF1F2∽△BOA

  

b = 2c  

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖,A、B是橢圓
x24
+y2=1
的左、右頂點(diǎn),直線x=t(-2<t<2)交橢圓于M、N兩點(diǎn),經(jīng)過A、M、N的圓的圓心為C1,經(jīng)過B、M、N的圓的圓心為C2
(1)求證|C1C2|為定值;
(2)求圓C1與圓C2的面積之和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A、B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長(zhǎng)軸和短軸端點(diǎn),點(diǎn)P在橢圓上,F(xiàn)、E是橢圓的左、右焦點(diǎn),若EP∥AB,PF⊥OF,則該橢圓的離心率等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),若橢圓C的離心率為
1
2
,且右準(zhǔn)線l的方程為x=4.
(1)求橢圓C的方程;
(2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交直線MB于點(diǎn)Q,試證明:直線PQ與x軸的交點(diǎn)R為定點(diǎn),并求出R點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

如右圖,A、B是橢圓的頂點(diǎn),F1、F2是兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),且PF1x軸,PF2AB,求此橢圓的離心率.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案