【題目】如圖,已知直線關于直線對稱的直線為,直線與橢圓分別交于點、、,記直線的斜率為.

(Ⅰ)求的值;

(Ⅱ)當變化時,試問直線是否恒過定點? 若恒過定點,求出該定點坐標;若不恒過定點,請說明理由.

【答案】(Ⅰ)1;(Ⅱ).

【解析】試題分析:(Ⅰ)可以設直線的方程為,再設直線上任意一點關于直線對稱點為,于是分別表示出,由直線對稱性可知, 所在直線與垂直,且中點在上,于是整理得出的值;(Ⅱ)本問考查橢圓中直線過定點問題,設,將AM方程與橢圓方程聯(lián)立,可以求出點M的坐標,同理將直線AN方程與橢圓方程聯(lián)立,可以求出點N的坐標,根據(jù)M,N兩點坐標,可以求出直線MN的方程,從而判定直線MN是否過定點.

試題解析:(Ⅰ)設直線上任意一點關于直線對稱點為

直線與直線的交點為,∴

,由

……..①

…….②,

由①②得

.

(Ⅱ)設點,由

,∴.

同理:

,∴

即:

∴當變化時,直線過定點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經過點,離心率為. 

(1)求橢圓的標準方程;

(2)過坐標原點作直線交橢圓、兩點,過點的平行線交橢圓、兩點.

①是否存在常數(shù),滿足?若存在,求出這個常數(shù);若不存在,請說明理由;

②若的面積為, 的面積為,,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCDAD∥BC,AB=AD=AC=3PA=BC=4,M為線段AD上一點,AM=2MD,NPC的中點.

)證明MN∥平面PAB;

)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中, , , 為線段的中點, 為線段的三等分點(如圖1).將沿著折起到的位置,連接(如圖2).

1若平面平面求三棱錐的體積;

2記線段的中點為,平面與平面的交線為,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構認為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標志為連續(xù)10天,每天新增疑似病例不超過7”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標志的是

A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0

C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子中裝有6個完全相同的小球,分別標號為1,23,4,56.

1)一次取出兩個小球,求其號碼之和能被3整除的概率;

2)有放回的取球兩次,每次取一個,求兩個小球號碼是相鄰整數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班主任為了對本班學生的月考成績進行分析,從全班40名同學中隨機抽取一個容量為6的樣本進行分析.隨機抽取6位同學的數(shù)學、物理分數(shù)對應如表:

學生編號

1

2

3

4

5

6

數(shù)學分數(shù)x

60

70

80

85

90

95

物理分數(shù)y

72

80

88

90

85

95

(1)根據(jù)上表數(shù)據(jù)用散點圖說明物理成績y與數(shù)學成績x之間是否具有線性相關性?

(2)如果具有線性相關性,求出線性回歸方程(系數(shù)精確到0.1);如果不具有線性相關性,請說明理由.

(3)如果班里的某位同學數(shù)學成績?yōu)?0,請預測這位同學的物理成績。

(附)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側面是菱形,其對角線的交點為,且 .

⑴ 求證: 平面

(2)設,若三棱錐的體積為1,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產品的質量以其“無故障使用時間 (單位:小時)”衡量,無故障使用時間越大表明產品質量越好,且無故障使用時間大于3小時的產品為優(yōu)質品,從某企業(yè)生產的這種產品中抽取100件,并記錄了每件產品的無故障使用時間,得到下面試驗結果:

無故障使用時間 (小時)

頻數(shù)

20

40

40

以試驗結果中無故障使用時間落入各組的頻率作為一件產品的無故障使用時間落入相應組的概率.

(1)從該企業(yè)任取兩件這種產品,求至少有一件是優(yōu)質品的概率;

(2)若該企業(yè)生產的這種產品每件銷售利潤 (單位:元)與其無故障使用時間的關系式為

從該企業(yè)任取兩件這種產品,其利潤記為 (單位:元),求的分布列與數(shù)學期望.

查看答案和解析>>

同步練習冊答案