8個籃球隊中有2個強隊,先任意將這8個隊分成兩個組(每組4個隊)進行比賽,則這兩個強隊被分在一個組內(nèi)的概率是(   )
A.B.C.D.
C
解法一:2個強隊分在同一組,包括互斥的兩種情況:2個強隊都分在A組和都分在B組.2個強隊都分在A組,可看成“從8個隊中抽取4個隊,里面包括2個強隊”這一事件,其概率為;2個強隊都分在B組,可看成“從8個隊中抽取4個隊,里面沒有強隊”這一事件,其概率為.
因此,2個強隊分在同一個組的概率為P=+=.
解法二:“2個強隊分在同一個組”這一事件的對立事件“2個組中各有一個強隊”,而兩個組中各有一個強隊,可看成“從8個隊中抽取4個隊,里面恰有一個強隊”這一事件,其概率為.
因此,2個強隊分在同一個組的概率P=1-=1-=.選C.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在調(diào)查男女乘客是否暈機的情況中,已知男乘客暈機為28人,不會暈機的也是28人,而女乘客暈機為28人,不會暈機的為56人,
(1)根據(jù)以上數(shù)據(jù)建立一個的列聯(lián)表;
(2)試判斷是否有95%的把握認為是否暈機與性別有關(guān)?
其中為樣本容量。
P(K2≥k0)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某地區(qū)有小學21所,中學14所,大學7所,現(xiàn)采用分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調(diào)查.
(1)求應從小學、中學、大學中分別抽取的學校數(shù)目;
(2)若從抽取的6所學校中隨機抽取2所學校做進一步數(shù)據(jù)分析,
①列出所有可能的抽取結(jié)果;
②求抽取的2所學校均為小學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某班級有4名學生被復旦大學自主招生錄取后,大學提供了3個專業(yè)由這4名學生選擇,每名學生只能選擇一個專業(yè),假設每名學生選擇每個專業(yè)都是等可能的,則這3個專業(yè)都有學生選擇的概率是               

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

“光盤行動”倡導厲行節(jié)約,反對鋪張浪費,帶動大家珍惜糧食,吃光盤子中的食物,得到從中央到民眾的支持,為了解某地響應“光盤行動”的實際情況,某校幾位同學組成研究性學習小組,從某社區(qū)歲的人群中隨機抽取n人進行了一次調(diào)查,得到如下統(tǒng)計表:

(1)求a,b的值,并估計本社區(qū)歲的人群中“光盤族”所占比例;
(2)從年齡段在的“光盤族”中,采用分層抽樣方法抽取8人參加節(jié)約糧食宣傳活動,并從這8人中選取2人作為領隊.
(1)已知選取2人中1人來自中的前提下,求另一人來自年齡段中的概率;
(2)求2名領隊的年齡之和的期望值(每個年齡段以中間值計算).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

甲乙兩人一起去游“2011西安世園會”,他們約定,各自獨立地從1到6號景點中任選4個進行游覽,每個景點參觀1小時,則最后一小時他們同在一個景點的概率是 ( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將擲一枚骰子一次得到的點數(shù)記為,則使得關(guān)于的方程有實數(shù)解的概率為_______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某廣場上有4盞裝飾燈,晚上每盞燈都隨機地閃爍紅燈或綠燈,每盞燈出現(xiàn)紅燈的概率都是,出現(xiàn)綠燈的概率都是.記這4盞燈中出現(xiàn)紅燈的數(shù)量為X,當這排裝飾燈閃爍一次時:
(1)求X=2時的概率;
(2)求X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩人進行投籃比賽,兩人各投3球,誰投進的球數(shù)多誰獲勝,已知每次投籃甲投進的概率為,乙投進的概率為,求:
(1)甲投進2球且乙投進1球的概率;
(2)在甲第一次投籃未投進的條件下,甲最終獲勝的概率.

查看答案和解析>>

同步練習冊答案