【題目】已知?jiǎng)訄A過定點(diǎn)A(4,0), 且在y軸上截得的弦MN的長(zhǎng)為8.

(Ⅰ) 求動(dòng)圓圓心的軌跡C的方程;

(Ⅱ) 已知點(diǎn)B(1,0), 設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P, Q, x軸是的角平分線, 證明直線l過定點(diǎn).

【答案】(Ⅰ)(Ⅱ)見解析

【解析】(Ⅰ)設(shè)動(dòng)圓圓心C的坐標(biāo)為( x , y )則所以,所求動(dòng)圓圓心的軌跡C的方程為

(Ⅱ)證明:

設(shè)直線l方程為,聯(lián)立(其中

設(shè),x軸是的角平分線,則

,即故直線l方程為,直線l過定點(diǎn).1,0

本題考查軌跡方程求法、直線方程、圓方程、直線與圓的位置關(guān)系及直線過定點(diǎn)問題.第一問曲線軌跡方程的求解問題是高考的熱點(diǎn)題型之一,準(zhǔn)確去除不滿足條件的點(diǎn)是關(guān)鍵.第二問對(duì)角平分線的性質(zhì)運(yùn)用是關(guān)鍵,對(duì)求定值問題的解決要控制好運(yùn)算量,同時(shí)注意好判別式的條件,以防多出結(jié)果.圓錐曲線問題經(jīng)常與向量、三角函數(shù)結(jié)合,在訓(xùn)練中要注意.本題無論是求圓心的軌跡方程,還是求證直線過定點(diǎn),計(jì)算量都不太大,對(duì)思維的要求挺高;設(shè)計(jì)問題背景,彰顯應(yīng)用魅力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓右頂點(diǎn)與右焦點(diǎn)的距離為,短軸長(zhǎng)為

I)求橢圓的方程;

)過左焦點(diǎn)F的直線與橢圓分別交于A、B兩點(diǎn),若三角形OAB的面積為求直線AB的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)證明: 圖象恒在直線的上方;

(2)若恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·云南玉溪一中月考)已知函數(shù),函數(shù)g(x)=f(x)-x+1的零點(diǎn)按從小到大的順序排列成一個(gè)數(shù)列,該數(shù)列的前n項(xiàng)的和為Sn,則S10等于(  )

A. 45 B. 55

C. 210-1 D. 29-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

,求函數(shù)的極值;

(Ⅱ)若,,,使得),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的面積為,且,

(Ⅰ)若 的圖象與直線相鄰兩個(gè)交點(diǎn)間的最短距離為,且,求的面積

(Ⅱ)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“過大年,吃水餃”是我國(guó)不少地方過春節(jié)的一大習(xí)俗,2018年春節(jié)前夕, 市某質(zhì)檢部門隨機(jī)抽取了100包某種品牌的速凍水餃,檢測(cè)其某項(xiàng)質(zhì)量指標(biāo).

(1)求所抽取的100包速凍水餃該項(xiàng)質(zhì)量指標(biāo)值的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)①由直方圖可以認(rèn)為,速凍水餃的該項(xiàng)質(zhì)量指標(biāo)值服從正態(tài)分布,利用該正態(tài)分布,求落在內(nèi)的概率;

②將頻率視為概率,若某人從某超市購(gòu)買了4包這種品牌的速凍水餃,記這4包速凍水餃中這種質(zhì)量指標(biāo)值位于內(nèi)的包數(shù)為,求的分布列和數(shù)學(xué)期望.

附:①計(jì)算得所抽查的這100包速凍水餃的質(zhì)量指標(biāo)的標(biāo)準(zhǔn)差為;

②若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,棱底面,且, , , 的中點(diǎn).

(1)求證: 平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, ,

,點(diǎn)在線段上,且, , 平面.

1)求證:平面平面;

2)當(dāng)四棱錐的體積最大時(shí),求四棱錐的表面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案