【題目】為選拔A,B兩名選手參加某項(xiàng)比賽,在選拔測(cè)試期間,他們參加選拔的5次測(cè)試成績(jī)(滿分100分)記錄如下:

1)從AB兩人的成績(jī)中各隨機(jī)抽取一個(gè),求B的成績(jī)比A低的概率;

2)從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪位選手參加比賽更合適?說明理由.

【答案】1;(2A選手,理由見解析

【解析】

1)記被抽到的成績(jī)?yōu)?/span>,被抽到的成績(jī)?yōu)?/span>,用數(shù)對(duì)表示基本事件,用列舉法一一列出來,再根據(jù)古典概型的概率計(jì)算公式計(jì)算可得.

(2)分別計(jì)算平均數(shù)和方差即可判斷;

解:(1)記被抽到的成績(jī)?yōu)?/span>被抽到的成績(jī)?yōu)?/span>,用數(shù)對(duì)表示基本事件:

基本事件總數(shù).

的成績(jī)比為事件,事件包含的基本事件:

事件包含的基本事件數(shù).

所以.

2)派參賽比較合適.理由如下:

,

,

,

的成績(jī)較穩(wěn)定,派參賽比較合適.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是邊長(zhǎng)為2的等邊三角形,,當(dāng)三棱錐體積最大時(shí),其外接球的表面積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)在本學(xué)期的六次考試成績(jī)統(tǒng)計(jì)如圖,甲、乙兩組數(shù)據(jù)的平均值分別為,則(

A.每次考試甲的成績(jī)都比乙的成績(jī)高B.甲的成績(jī)比乙穩(wěn)定

C.一定大于D.甲的成績(jī)的極差大于乙的成績(jī)的極差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),其中.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.

1)求的直角坐標(biāo)方程;

2)已知點(diǎn),交于點(diǎn),與交于兩點(diǎn),且,求的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為選拔兩名選手參加某項(xiàng)比賽,在選拔測(cè)試期間,測(cè)試成績(jī)大于或等于80分評(píng)價(jià)為優(yōu)秀等級(jí),他們參加選拔的5次測(cè)試成績(jī)(滿分100分)記錄如下:

1)從的成績(jī)中各隨機(jī)抽取一個(gè),求選手測(cè)試成績(jī)?yōu)?/span>優(yōu)秀的概率;

2)從、兩人測(cè)試成績(jī)?yōu)?/span>優(yōu)秀的成績(jī)中各隨機(jī)抽取一個(gè),求的成績(jī)比低的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓柱中,點(diǎn)、分別為上、下底面的圓心,平面是軸截面,點(diǎn)在上底面圓周上(異于、),點(diǎn)為下底面圓弧的中點(diǎn),點(diǎn)與點(diǎn)在平面的同側(cè),圓柱的底面半徑為1,高為2.

(1)若平面平面,證明:;

(2)若直線與平面所成線面角的正弦值等于,證明:平面與平面所成銳二面角的平面角大于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計(jì)算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計(jì)如下:

包裹重量(單位:

包裹件數(shù)

公司對(duì)近天,每天攬件數(shù)量統(tǒng)計(jì)如下表:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

以上數(shù)據(jù)已做近似處理,并將頻率視為概率.

(1)計(jì)算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;

(2)(i)估計(jì)該公司對(duì)每件包裹收取的快遞費(fèi)的平均值;

(ii)公司將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的用作其他費(fèi)用.目前前臺(tái)有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺(tái)工作人員裁減人,試計(jì)算裁員前后公司每日利潤(rùn)的數(shù)學(xué)期望,并判斷裁員是否對(duì)提高公司利潤(rùn)更有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在等腰梯形中,分別為的中點(diǎn) 中點(diǎn),現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中.

(1)證明:;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右頂點(diǎn)為,左焦點(diǎn)為,離心率,過點(diǎn)的直線與橢圓交于另一個(gè)點(diǎn),且點(diǎn)軸上的射影恰好為點(diǎn),若

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過圓上任意一點(diǎn)作圓的切線與橢圓交于兩點(diǎn),以為直徑的圓是否過定點(diǎn),如過定點(diǎn),求出該定點(diǎn);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案