9.下表是某市近30年來月平均氣溫(℃)的數(shù)據(jù)統(tǒng)計表:則適合這組數(shù)據(jù)的函數(shù)模型是( 。
月份123456789101112
平均溫度-5.9-3.33.39.315.120.322.822.218.211.94.3-2.4
A.y=acos$\frac{πx}{6}$B.y=acos$\frac{(x-1)π}{6}$+k(a>0,k>0)
C.y=-acos$\frac{(x-1)π}{6}$+k(a>0,k>0)D.y=acos$\frac{πx}{6}$-3

分析 利用函數(shù)的最大與最小值排除選項A、D,再利用函數(shù)的單調(diào)性,排除選項B,從而得出符合題意的函數(shù).

解答 解:根據(jù)題意,當(dāng)x=7時,函數(shù)取得最大值y=22.8,
當(dāng)x=1時,函數(shù)取值最小值y=-5.9,
由此排除選項A、D;
又當(dāng)x∈[1,7]時,函數(shù)y是單調(diào)遞增的,
x∈[7,12]時,函數(shù)y是單調(diào)遞減的,
由此排除選項B;
所以選項C中函數(shù)y=-acos$\frac{(x-1)π}{6}$+k(a>0,k>0)滿足題意.
故選:C.

點評 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了函數(shù)模型的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.當(dāng)m為何值時,橢圓x2+2y2=1和直線y=x+m相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.解方程:(1gx)2-1gx2一3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=(1-$\frac{1}{4}$x2)(x2+ax+b)的圖象關(guān)于直線x=-1對稱,則f(x)的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)數(shù)列{an}滿足a1=0,nan+1-(n+1)an=n2+n+1,n∈N*
(1)證明:{$\frac{{a}_{n}+1}{n}$}為等差數(shù)列:
(2)求數(shù)列{an}的通項公式:
(3)證明:$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等比數(shù)列{an}中,a2a6a10=1,求a3•a9的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.解不等式:$\frac{1}{C\stackrel{3}{n}}$-$\frac{1}{{C\stackrel{4}{n}}_{\;}}$<$\frac{2}{C\stackrel{5}{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知方程$\frac{{x}^{2}}{2-a}$+$\frac{{y}^{2}}{a-1}$=1表示橢圓,那么a的范圍為(1,$\frac{3}{2}$)∪($\frac{3}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+3y-16≤0}\end{array}\right.$,若mx-y=0,則實數(shù)m的取值范圍為[1,5].

查看答案和解析>>

同步練習(xí)冊答案