【題目】在下列向量組中,可以把向量 =(3,2)表示出來的是(
A. =(0,0), =(1,2)
B. =(﹣1,2), =(5,﹣2)
C. =(3,5), =(6,10)
D. =(2,﹣3), =(﹣2,3)

【答案】B
【解析】解:根據(jù) , 選項A:(3,2)=λ(0,0)+μ(1,2),則 3=μ,2=2μ,無解,故選項A不能;
選項B:(3,2)=λ(﹣1,2)+μ(5,﹣2),則3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故選項B能.
選項C:(3,2)=λ(3,5)+μ(6,10),則3=3λ+6μ,2=5λ+10μ,無解,故選項C不能.
選項D:(3,2)=λ(2,﹣3)+μ(﹣2,3),則3=2λ﹣2μ,2=﹣3λ+3μ,無解,故選項D不能.
故選:B.
【考點精析】本題主要考查了平面向量的基本定理及其意義的相關知識點,需要掌握如果、是同一平面內的兩個不共線向量,那么對于這一平面內的任意向量,有且只有一對實數(shù)、,使才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某貨輪勻速行駛在相距海里的甲、乙兩地間運輸貨物,運輸成本由燃料費用和其他費用組成.已知該貨輪每小時的燃料費用與其航行速度的平方成正比(比例系數(shù)為),其他費用為每小時元,且該貨輪的最大航行速度為海里/小時.

(1)請將從甲地到乙地的運輸成本(元)表示為航行速度(海里/小時)的函數(shù);

(2)要使從甲地到乙地的運輸成本最少,該貨輪應以多大的航行速度行駛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)的最小正周期為.

1)求的值;

2)將函數(shù)的圖像向左平移個單位,再將得到的圖像上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)的圖像,求函數(shù)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l1:3x+2y﹣1=0和l2:5x+2y+1=0的交點為A
(1)若直線l3:(a2﹣1)x+ay﹣1=0與l1平行,求實數(shù)a的值;
(2)求經(jīng)過點A,且在兩坐標軸上截距相等的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,墻上有一壁畫,最高點A離地面4米,最低點B離地面2米.觀察者從距離墻x(x>1)米,離地面高a(1≤a≤2)米的C處觀賞該壁畫,設觀賞視角∠ACB=θ.

(1)若a=1.5,問:觀察者離墻多遠時,視角θ最大?
(2)若tanθ= ,當a變化時,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一側,排法種數(shù)為( )

A. 12 B. 40 C. 60 D. 80

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一張足夠大的紙板上截取一個面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個無蓋的長方體紙盒(如圖).設小正方形邊長為x厘米,矩形紙板的兩邊AB,BC的長分別為a厘米和b厘米,其中ab

(1)當a=90時,求紙盒側面積的最大值;

(2)試確定ab,x的值,使得紙盒的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是等差數(shù)列,滿足,數(shù)列滿足,且為等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓上的點到兩個焦點的距離之和為,短軸長為,直線與橢圓交于兩點.

1求橢圓的方程;

2若直線與圓相切,探究是否為定值,如果是定值,請求出該定值;如果不是定值,請說明理由

查看答案和解析>>

同步練習冊答案