【題目】已知向量,為坐標原點,動點滿足:

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)已知直線都過點,且,與軌跡分別交于點,試探究是否存在這樣的直線?使得是等腰直角三角形.若存在,指出這樣的直線共有幾組(無需求出直線的方程);若不存在,請說明理由.

【答案】設(shè)點,則…… 1

……… ……… ……… 2

M的軌跡C是以為焦點,長軸長為 4 的橢圓……… …… ……… 4

動點M的軌跡C的方程為……… ……… ……… 6

(2)由(1)知,軌跡C是橢圓,點是它的上頂點,

設(shè)滿足條件的直線、存在,直線的方程為

則直線的方程為,② ……… ……… ……… 7

代入橢圓方程并整理得:,可得,則.

代入橢圓方程并整理得:,可得,則.

△BDE是等腰直角三角形得

…………11

④…………………………………………12

方程.

即滿足條件的直線存在,共有3組.

【解析】略

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,已知曲線的極坐標方程為,它在點處的切線為直線

(Ⅰ)求直線的直角坐標方程;

(Ⅱ)已知點為橢圓上一點,求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市將建一個制藥廠,但該廠投產(chǎn)后預(yù)計每天要排放大約80噸工業(yè)廢氣,這將造成極大的環(huán)境污染.為了保護環(huán)境,市政府決定支持該廠貸款引進廢氣處理設(shè)備來減少廢氣的排放,該設(shè)備可以將廢氣轉(zhuǎn)化為某種化工產(chǎn)品和符合排放要求的氣體,經(jīng)測算,制藥廠每天利用設(shè)備處理廢氣的綜合成本(元)與廢氣處理量(噸)之間的函數(shù)關(guān)系可近似地表示為,且每處理噸工業(yè)廢氣可得價值為元的某種化工產(chǎn)品并將之利潤全部用來補貼廢氣處理.

(1)若該制藥廠每天廢氣處理量計劃定位20噸時,那么工廠需要每天投入的廢氣處理資金為多少元?

(2)若該制藥廠每天廢氣處理量計劃定為噸,且工廠不用投入廢氣處理資金就能完成計劃的處理量,求的取值范圍;

(3)若該制藥廠每天廢氣處理量計劃定為)噸,且市政府決定為處理每噸廢氣至少補貼制藥廠元以確保該廠完成計劃的處理量總是不用投入廢氣處理資金,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)市場分析,南雄市精細化工園某公司生產(chǎn)一種化工產(chǎn)品,當月產(chǎn)量在10噸至25噸時,月生產(chǎn)總成本y(萬元)可以看成月產(chǎn)量x()的二次函數(shù);當月產(chǎn)量為10噸時,月總成本為20萬元;當月產(chǎn)量為15噸時,月總成本最低為17.5萬元,為二次函數(shù)的頂點.寫出月總成本y(萬元)關(guān)于月產(chǎn)量x()的函數(shù)關(guān)系.已知該產(chǎn)品銷售價為每噸1.6萬元,那么月產(chǎn)量為多少時,可獲最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)有兩個零點,求滿足條件的最小正整數(shù)的值;

(3)若方程,有兩個不相等的實數(shù)根,比較與0的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

周銷售量(單位:噸)

2

3

4

頻數(shù)

20

50

30

根據(jù)上面統(tǒng)計結(jié)果,求周銷售量分別為2,3噸和4噸的頻率;

已知每噸該商品的銷售利潤為2千元,表示該種商品兩周銷售利潤的和(單位:千元),若以上述頻率作為概率,且各周的銷售量相互獨立,的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若函數(shù)存在極值,對于任意的,存在正實數(shù),使得,試判斷的大小關(guān)系并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一份測試題包括6道選擇題,每題只有一個選項是正確的.如果一個學(xué)生對每一道題都隨機猜一個答案,用隨機模擬方法估計該學(xué)生至少答對3道題的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分,第(1)問 6 分,第(2)問 6 分)

某品牌新款夏裝即將上市,為了對夏裝進行合理定價,在該地區(qū)的三家連鎖店各進行了兩天試銷售,得到如下數(shù)據(jù):

連鎖店

A店

B店

C店

售價(元)

80

86

82

88

84

90

銷售量(件)

88

78

85

75

82

66

(1)以三家連鎖店分別的平均售價和平均銷量為散點,求出售價與銷量的回歸直線方程;

(2)在大量投入市場后,銷售量與單價仍然服從(1)中的關(guān)系,且該夏裝成本價為40元/件,為使該款夏裝在銷售上獲得最大利潤,該款夏裝的單價應(yīng)定為多少元(保留整數(shù))?

查看答案和解析>>

同步練習冊答案