8.已知0(0,0),A(3,0),B(0,4),P是△OAB的內(nèi)切圓上一動點,則以PO、PA、PB為半徑的三個圓面積之和的最大值為( 。
A.10πB.12πC.22πD.25π

分析 由題意可得內(nèi)切圓的方程為(x-1)2+(y-1)2=1,可得3x2+3y2-6x-6y+3=0,整體代入|PA|2+|PB|2+|PO|2=-2y+22,由函數(shù)的思想可得最值.

解答 解:設(shè)△OAB內(nèi)切圓的圓心為(a,a)
∵0(0,0),A(3,0),B(0,4),
∴|OA|=3,|OB|=4,|AB|=5,
由等面積可得$\frac{1}{2}×3×4$=$\frac{1}{2}$(3+4+5)a,解得a=1
∴△OAB內(nèi)切圓的圓心為(1,1),半徑為1,
∴△OAB內(nèi)切圓方程為(x-1)2+(y-1)2=1;
∵點P是△ABO內(nèi)切圓上一點,設(shè)P(x,y)
則(x-1)2+(y-1)2=1,
∴x2+y2-2x-2y+1=0,
∴3x2+3y2-6x-6y+3=0,
∴|PA|2+|PB|2+|PO|2=(x-3)2+y2+x2+(y-4)2+x2+y2
=3x2+3y2-6x-8y+25=3x2+3y2-6x-6y+3-2y+22=-2y+22
∴|PA|2+|PB|2+|PC|2=-2y+22,(0≤y≤2),
∴y=0時上式取最大值22,
∴PO、PA、PB為半徑的三個圓面積之和的最大值為π(|PA|2+|PB|2+|PC|2)=22π.
故選:C.

點評 本題考查直線和圓的位置關(guān)系,涉及等面積和整體思想,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=logax(a>0且a≠1),函數(shù)g(x)=-x2+bx+c,且f(4)-f(2)=1,g(x)的圖象過點A(4,-5)及B(-2,-5).
(1)求f(x)和g(x)的表達式;
(2)求函數(shù)f[g(x)]的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.實數(shù)m為何值時,關(guān)于x的方程7x2-(m+13)x+m2-m-2=0的兩個實根x1,x2滿足0<x1<x2<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知$\frac{cos(180°+α)sin(α+360°)sin(540°+α)}{sin(-α-180°)cos(-180°-α)}$=lg$\frac{1}{\root{3}{10}}$,求$\frac{cos(π+α)}{cosα[cos(π-α)-1]}$+$\frac{cos(α-2π)}{cosαcos(π-α)+cos(α-2π)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義在R上的函數(shù)f(x)是偶函數(shù),若f(x)在區(qū)間[1,2]上是減函數(shù),在區(qū)間[2,3]上是增函數(shù),則f(x)( 。
A.在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[-3,-2]上是增函效
B.在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[-3,-2]上是減函數(shù)
C.在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[-3,-2]上是增函數(shù)
D.在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[-3,-2]上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2sin(3x-$\frac{π}{6}$).
(1)求f(0)、f($\frac{2π}{9}$);
(2)分別指出函數(shù)f(x)的振幅、相位、初相位的值,并求出其最小正周期;
(3)求函數(shù)f(x)的遞增區(qū)間和遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)區(qū)域G為圓C1:x2+y2=$\frac{1}{2}$的外部與圓C2:x2+y2=2的內(nèi)部的公共部分,點P(x,y)在G中運動,求點Q(x+y,x-y)的軌跡方程,并作出它的圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$)+cos(ωx-$\frac{π}{6}$)(ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間,其圖象對稱軸的方程和對稱中心的坐標;
(2)作出該函數(shù)在一個周期內(nèi)的簡圖;
(3)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$f(x)={log_3}(-{x^2}+2x)$的單調(diào)遞減區(qū)間為( 。
A.(1,+∞)B.(1,2)C.(0,1)D.(-∞,1)

查看答案和解析>>

同步練習(xí)冊答案