【題目】如圖,F(xiàn)1 , F2是雙曲線C: (a>0,b>0)的左、右焦點,過F1的直線l與C的左、右兩支分別交于A,B兩點.若△ABF2為等邊三角形,則雙曲線的離心率為(

A.
B.
C.
D.

【答案】D
【解析】解:由△BAF2為等邊三角形,
設A為右支上一點,且AF2=t,則AB=BF2=t,
由雙曲線的定義可得,
AF2﹣AF1=2a,BF1﹣BF2=2a,BF1=AB+AF1 ,
即有t+2a=2t﹣2a,
解得,t=4a,
AF1=6a,AF2=4a,F(xiàn)1F2=2c,
由余弦定理可得,
F1F22=AF12+AF22﹣2AF1AF2cos60°,
即有4c2=36a2+16a2﹣2×6a×4a× ,
即為4c2=28a2
則有e= =
故選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設命題p:(4x﹣3)2≤1;命題q:x2﹣(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)證明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(Ⅰ)求不等式﹣x2﹣2x+3<0的解集(用集合或區(qū)間表示) (Ⅱ)求不等式|x﹣3|<1的解集(用集合或區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題12分)設函數(shù)是定義域為R的奇函數(shù).

(1)求k的值;

(2)若,試說明函數(shù)的單調(diào)性,并求使不等式恒成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C1:(x+3)2+y2=1和圓C2:(x﹣3)2+y2=9,動圓M同時與圓C1及圓C2相外切,求動圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了檢測某種產(chǎn)品的質量(單位:千克),抽取了一個容量為N的樣本,整理得到的數(shù)據(jù)作出了頻率分布表和頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[17.5,20)

10

0.05

[20,225)

50

0.25

[22.5,25)

a

b

[25,27.5)

40

c

[27.5,30]

20

0.10

合計

N

1

(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求頻率分布直方圖中d的值;
(Ⅲ)從該產(chǎn)品中隨機抽取一件,試估計這件產(chǎn)品的質量少于25千克的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)若是函數(shù)的極值點,求的值;

(2)當時,若,都有成立,求實數(shù)

的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若平面區(qū)域 夾在兩條斜率為 的平行直線之間,則這兩平行直線間的距離的最小值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案