解不等式loga(x+1-a)>1.
【答案】分析:原不等式可轉(zhuǎn)化為loga(x+1-a)>logaa,分①a>1②0<a<1兩種情況討論,結(jié)合對(duì)數(shù)函數(shù)的單調(diào)性解對(duì)數(shù)不等式可求.
解答:解:①當(dāng)a>1時(shí),原不等式等價(jià)于不等式組:
解得x>2a-1.
②當(dāng)0<a<1時(shí),原不等式等價(jià)于不等式組:
解得a-1<x<2a-1
綜上,當(dāng)a>1時(shí),不等式的解集為{x|x>2a-1};
當(dāng)0<a<1時(shí),不等式的解集為{x|a-1<x<2a-1}.
點(diǎn)評(píng):本小題考查對(duì)數(shù)函數(shù)的單調(diào)性性質(zhì)的運(yùn)用,對(duì)數(shù)不等式的解法,分類(lèi)討論的方法和運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式loga(x+1-a)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(x+1)-loga(1-x),(a>0,且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并說(shuō)明理由;
(3)設(shè)a=
12
,解不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

解不等式loga(x+1-a)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

解不等式loga(x+1-a)>1.

查看答案和解析>>

同步練習(xí)冊(cè)答案