【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)令函數(shù)是自然對數(shù)的底數(shù),若函數(shù)
有且只有一個(gè)零點(diǎn)
,判斷
與
的大小,并說明理由.
【答案】(1)答案見解析;(2),理由見解析
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)根據(jù)函數(shù)的單調(diào)性求出在
上有唯一零點(diǎn)
,由已知函數(shù)
有且只有1個(gè)零點(diǎn)
,則
,得
,令
,故
,求出
的范圍即可.
解:(1)由已知,且
,
當(dāng)時(shí),
恒成立,則
在
上單調(diào)遞增;
當(dāng)時(shí),令
得,
,
則在
上單調(diào)遞增,在
上單調(diào)遞減.
(2),則
,
則,則
在
上單調(diào)遞增,
又當(dāng),
故在
上有唯一零點(diǎn)
,
當(dāng),
單調(diào)遞減;
,
單調(diào)遞增
故為
的最小值,
當(dāng),
由已知函數(shù)有且只有一個(gè)零點(diǎn)
,則
,
故,
則,
則,
得,
令,
故,
則,
故,
故在
上遞減,
,
故在
上有一個(gè)零點(diǎn),在
上無零點(diǎn),
故.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間
上有唯一的極值點(diǎn)
,求
的取值范圍,并證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,空間幾何體中,四邊形
是梯形,四邊形
是矩形,且平面
平面
,
,
,
是線段
上的動點(diǎn).
(1)求證: ;
(2)試確定點(diǎn)的位置,使
平面
,并說明理由;
(3)在(2)的條件下,求空間幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前
項(xiàng)和為
,
,
.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足:
對于任意,都有
成立.
①求數(shù)列的通項(xiàng)公式;
②設(shè)數(shù)列,問:數(shù)列
中是否存在三項(xiàng),使得它們構(gòu)成等差數(shù)列?若存在,求出這三項(xiàng);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)若有兩個(gè)不同的極值點(diǎn)
,
,且
,若不等式
恒成立.求正實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等腰梯形中(如圖1),
,
,
為線段
的中點(diǎn),
、
為線段
上的點(diǎn),
,現(xiàn)將四邊形
沿
折起(如圖2)
(1)求證:平面
;
(2)在圖2中,若,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在
上存在極大值,求
的取值范圍;
(2)若軸是曲線
的一條切線,證明:當(dāng)
時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
:
(
為參數(shù),
),曲線
:
(
為參數(shù)),
與
相切于點(diǎn)
,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求的極坐標(biāo)方程及點(diǎn)
的極坐標(biāo);
(2)已知直線:
與圓
:
交于
,
兩點(diǎn),記
的面積為
,
的面積為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大慶實(shí)驗(yàn)中學(xué)在高二年級舉辦線上數(shù)學(xué)知識競賽,在已報(bào)名的400名學(xué)生中,根據(jù)文理學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…,[80,90],并整理得到如下頻率分布直方圖:
(1)估算一下本次參加考試的同學(xué)成績的中位數(shù)和眾數(shù);
(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(3)已知樣本中有一半理科生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的文理科生人數(shù)相等.試估計(jì)總體中理科生和文科生人數(shù)的比例.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com