【題目】已知復(fù)數(shù)z滿足|z|,z的實(shí)部大于0,z2的虛部為2.
(1)求復(fù)數(shù)z;
(2)設(shè)復(fù)數(shù)z,z2,z﹣z2之在復(fù)平面上對(duì)應(yīng)的點(diǎn)分別為A,B,C,求()
的值.
【答案】(1)1+i;(2)﹣2.
【解析】
(1)先設(shè)出復(fù)數(shù)的表達(dá)式,結(jié)合已知條件中
,實(shí)部大于
,和
的虛部為
,列出方程求解出復(fù)數(shù)
的表達(dá)式.
(2)由(1)求出復(fù)數(shù)的表達(dá)式,即可得到
,
,
在復(fù)平面上對(duì)應(yīng)的點(diǎn)坐標(biāo),進(jìn)而求出結(jié)果.
(1)設(shè)復(fù)數(shù)z=x+yi,x、y∈R;
由|z|,得x2+y2=2;
又z的實(shí)部大于即x>0,
z2=x2﹣y2+2xyi的虛部為2xy=2,
所以xy=1;
解得x=1,y=1;
所以復(fù)數(shù)z=1+i;
(2)復(fù)數(shù),則
,
;
則A(1,1),B(0,2),C(1,﹣1);
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在
軸正半軸上,點(diǎn)
到其準(zhǔn)線的距離等于
.
(Ⅰ)求拋物線的方程;
(Ⅱ)如圖,過拋物線的焦點(diǎn)的直線從左到右依次與拋物線
及圓
交于
、
、
、
四點(diǎn),試證明
為定值.
(Ⅲ)過、
分別作拋物
的切線
、
,且
、
交于點(diǎn)
,求
與
面積之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的左右焦點(diǎn)為
,
,
是橢圓上半部分的動(dòng)點(diǎn),連接
和長(zhǎng)軸的左右兩個(gè)端點(diǎn)所得兩直線交
正半軸于
,
兩點(diǎn)(點(diǎn)
在
的上方或重合).
(1)當(dāng)面積
最大時(shí),求橢圓的方程;
(2)當(dāng)時(shí),若
是線段
的中點(diǎn),求直線
的方程;
(3)當(dāng)時(shí),在
軸上是否存在點(diǎn)
使得
為定值,若存在,求
點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
.
(Ⅰ)當(dāng)時(shí),求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)若函數(shù)有唯一零點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:xy
2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點(diǎn),求拋物線C的方程;
(2)已知拋物線C上存在關(guān)于直線l對(duì)稱的相異兩點(diǎn)P和Q.
①求證:線段PQ的中點(diǎn)坐標(biāo)為;
②求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若方程在
內(nèi)有兩個(gè)不等實(shí)根,求
的取值范圍(其中
為自然對(duì)數(shù)的底);
(2)令,如果
圖象與
軸交于
,
,
中點(diǎn)為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬元)和銷售額
(萬元)數(shù)據(jù)如下:
超市 | A | B | C | D | E | F | G |
廣告費(fèi)支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線性回歸模型擬合與
的關(guān)系,求
關(guān)于
的線性回歸方程;
(2)用二次函數(shù)回歸模型擬合與
的關(guān)系,可得回歸方程:
,
經(jīng)計(jì)算二次函數(shù)回歸模型和線性回歸模型的分別約為
和
,請(qǐng)用
說明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)
超市廣告費(fèi)支出為3萬元時(shí)的銷售額.
參數(shù)數(shù)據(jù)及公式:,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A.命題“若,則
”的逆否命題是“若
,則
”
B.“”是“
”的充分不必要條件
C.若為假命題,則
、
均為假命題
D.命題:“
,使得
”,則非
:“
,
”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn):(單位:噸),用水量不超過的部分按平價(jià)收費(fèi),超過
的部分按議價(jià)收費(fèi),為了了解全布市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照
……
分成9組,制成了如圖所示的頻率分布直方圖
(1)求頻率分布直方圖中的值;
(2)若該市政府看望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)
的值,并說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com