已知數(shù)列的各項都是正數(shù),且滿足:
(1)求
(2)證明:
(1) ,。(2)利用“分類討論”“排除法”。

試題分析:(1)  2分
    4分
(2)    6分

即可由   得
矛盾,   分
    10分
  14分

綜上:    16分
點評:中檔題,利用數(shù)列的遞推公式,可以確定數(shù)列中的項。通過研究數(shù)列的特征,得到,然后討論的不同取值情況,利用“排除法”證明不等式。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

公差不為零的等差數(shù)列的前項和為,若的等比中項,且,則=(   )
A.80B.160     C.320    D.640

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列滿足,其中,試通過計算猜想等于(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列中,.
(1)設(shè),求證數(shù)列是等比數(shù)列;
(2)求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)列中, ,那么此數(shù)列的前10項和=      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若數(shù)列的前項和,則此數(shù)列的通項公式為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知各項均為正數(shù)的數(shù)列{a}滿足a=2a+aa,且a+a=2a+4,其中n∈N.
(Ⅰ)若b=,求數(shù)列{b}的通項公式;
(Ⅱ)證明:++…+>(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列{an},Sn為它的前n項的和,已知a1=-2,an+1=Sn,當(dāng)n≥2時,求:an和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列的各項均不等于0和1,此數(shù)列前項的和為,且滿足,則滿足條件的數(shù)列共有(   )
A. 2個B. 6個C. 8個D. 16個

查看答案和解析>>

同步練習(xí)冊答案