.(本小題滿分16分)
平面直角坐標系xOy中,已知圓M經(jīng)過F1(0,-c),F(xiàn)2(0,c),A(c,0)三點,其中c>0
(1)求圓M的標準方程(用含c的式子表示);
(2)已知橢圓(其中)的左、右頂點分別為D、B,圓 M與x軸的兩個交點分別為A、C,且A點在B點右側,C點在D點右側。
求橢圓離心率的取值范圍;
若A、B、M、O、C、D(O為坐標原點)依次均勻分布在x軸上,問直線MF1與直線DF2的交點是否在一條定直線上?若是,請求出這條定直線的方程;若不是,請說明理由。
.設圓M:
                                                3分
圓M:                                       5分
(2)①,又,由題意
7分
                                       10分
②由①
①,②,                         13分
由①②的兩直線的交點易知為定值,
在定直線上                                       16分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題


本小題滿分12分)
如圖,已知橢圓C1的中心在原點O,長軸左、右端點M,N在x軸上,橢圓C2的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點,與C2交于兩點,這四點按縱坐標從大到小依次為A,B,C,D.

(1)設,求的比值;
(2)當e變化時,是否存在直線l,使得BO∥AN,并說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共12分)





圓中,求面積最小的圓的半徑長。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,點是橢圓上一動點,點是點軸上的射影,坐標平面內(nèi)動點滿足:為坐標原點),設動點的軌跡為曲線

(Ⅰ)求曲線的方程并畫出草圖;
(Ⅱ)過右焦點的直線交曲線兩點,且,點關于軸的對稱點為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

中心在原點,對稱軸為坐標軸的雙曲線C的兩條漸近線與圓都相切,則雙曲線C的離心率是____;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知兩定點A(-2,0)、B(1,0),如果動點P滿足|PA|=2|PB|,則點P的軌跡方程為:________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的焦距為2,點在橢圓上,
 求橢圓的標準方程;
 若過點的直線與中的橢圓交于不同的兩點、之間);
試求面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓經(jīng)過點,則______,離心率______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)
已知雙曲線的中心在原點,左右焦點分別為,離心率為,且過點,

(1)求此雙曲線的標準方程;
(2)若直線系(其中為參數(shù))所過的定點恰在雙曲線上,求證:。

查看答案和解析>>

同步練習冊答案