已知函數(shù)f(x)=x|x|.當(dāng)x∈[a,a+1]時,不等式f(x+2a)>4f(x)恒成立,則實數(shù)a的取值范圍是 .
【答案】分析:根據(jù)已知函數(shù)的解析式易判斷出函數(shù)的奇偶性及單調(diào)性,結(jié)合單調(diào)性可將不等式f(x+2a)>4f(x)可化為x+2a>2x,將恒成立問題轉(zhuǎn)化為最值問題后,易得答案.
解答:解:∵y=|x|為偶函數(shù),y=x為奇函數(shù)
∴f(x)=x|x|奇函數(shù)
當(dāng)x≥0時,f(x)=x2為增函數(shù),由奇函數(shù)在對稱區(qū)間上單調(diào)性相同可得
函數(shù)f(x)在R上增函數(shù)
又∵不等式f(x+2a)>4f(x)可化為(x+2a)|x+2a|>4x•|x|=2x•|2x|=f(2x)
故當(dāng)x∈[a,a+1]時,不等式f(x+2a)>4f(x)恒成立,
即當(dāng)x∈[a,a+1]時,不等式x+2a>2x恒成立
即x<2a恒成立
即a+1<2a
解得a>1
故實數(shù)a的取值范圍是(1,+∞)
故答案為:(1,+∞)
點評:本題考查的知識點是函數(shù)奇偶性與單調(diào)性的綜合應(yīng)用,恒成立問題,其中分析出函數(shù)的單調(diào)性并將不等式f(x+2a)>4f(x)可化為x+2a>2x是解答的關(guān)鍵.