已知函數(shù)f(x)=x|x|.當(dāng)x∈[a,a+1]時,不等式f(x+2a)>4f(x)恒成立,則實數(shù)a的取值范圍是   
【答案】分析:根據(jù)已知函數(shù)的解析式易判斷出函數(shù)的奇偶性及單調(diào)性,結(jié)合單調(diào)性可將不等式f(x+2a)>4f(x)可化為x+2a>2x,將恒成立問題轉(zhuǎn)化為最值問題后,易得答案.
解答:解:∵y=|x|為偶函數(shù),y=x為奇函數(shù)
∴f(x)=x|x|奇函數(shù)
當(dāng)x≥0時,f(x)=x2為增函數(shù),由奇函數(shù)在對稱區(qū)間上單調(diào)性相同可得
函數(shù)f(x)在R上增函數(shù)
又∵不等式f(x+2a)>4f(x)可化為(x+2a)|x+2a|>4x•|x|=2x•|2x|=f(2x)
故當(dāng)x∈[a,a+1]時,不等式f(x+2a)>4f(x)恒成立,
即當(dāng)x∈[a,a+1]時,不等式x+2a>2x恒成立
即x<2a恒成立
即a+1<2a
解得a>1
故實數(shù)a的取值范圍是(1,+∞)
故答案為:(1,+∞)
點評:本題考查的知識點是函數(shù)奇偶性與單調(diào)性的綜合應(yīng)用,恒成立問題,其中分析出函數(shù)的單調(diào)性并將不等式f(x+2a)>4f(x)可化為x+2a>2x是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案