已知橢圓的方程為
x2
9
+
y2
4
=1,點(diǎn)E(1,1),橢圓上是否存在兩個(gè)不重合的兩點(diǎn)M,N,使
OE
=
1
2
OM
+
ON
)(O是坐標(biāo)原點(diǎn)),若存在,求出直線MN的方程,若不存在,請(qǐng)說(shuō)明理由.
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專(zhuān)題:平面向量及應(yīng)用,圓錐曲線的定義、性質(zhì)與方程
分析:
OE
=
1
2
(
OM
+
ON
)
便知E為MN的中點(diǎn),并且容易判斷出直線MN存在斜率,所以設(shè)MN的方程為y-1=k(x-1),聯(lián)立橢圓的方程,便可得到關(guān)于x的方程:(
1
9
+
k2
4
)x2+
k(1-k)
2
x+
(1-k)2
4
-1=0
,設(shè)M(x1,y1),N(x2,y2),由韋達(dá)定理便可得到x1+x2=-
k(1-k)
2
1
9
+
k2
4
=2
,解出k即可.
解答: 解:由已知條件知E為MN的中點(diǎn),并且直線MN存在斜率,設(shè)為k;
∴直線MN的方程為y-1=k(x-1),聯(lián)立橢圓方程并消去y得:
(
1
9
+
k2
4
)x2+
k(1-k)
2
x+
(1-k)2
4
-1=0
;
若設(shè)M(x1,y1),N(x2,y2),根據(jù)韋達(dá)定理及E(1,1)為MN的中點(diǎn)得:
x1+x2=-
k(1-k)
2
1
9
+
k2
4
=2
,解得k=-
4
9
;
∴直線MN的方程為:y-1=-
4
9
(x-1)

即:y=-
4
9
x+
13
9
點(diǎn)評(píng):考查向量加法的平行四邊形法則,橢圓的對(duì)稱(chēng)行,直線的點(diǎn)斜式方程,以及韋達(dá)定理,中點(diǎn)坐標(biāo)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求方程x2-2=0的所有實(shí)數(shù)根組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知單位向量
e1
,
e2
的夾角為120°,則|2
e1
-
e2
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=
b2
a
與橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)交于P、Q兩點(diǎn),F(xiàn)是C的右焦點(diǎn),若|PQ|=2|FQ|,則C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱柱ABCD-A1B1C1D1的三視圖和直觀圖如下:

(1)求出該四棱柱的表面積;
(2)設(shè)E是DC上一點(diǎn),試確定E的位置,使D1E∥平面A1BD,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)對(duì)定義域的每一個(gè)值x1,在其定義域內(nèi)都存在唯一的x2,使f(x1)f(x2)=1成立,則稱(chēng)該函數(shù)為“依賴(lài)函數(shù)”.給出以下命題:
①y=
1
x2
是“依賴(lài)函數(shù)”;
②y=
2
+sinx,x∈[-
π
2
,
π
2
]
是“依賴(lài)函數(shù)”;
③y=2x是“依賴(lài)函數(shù)”;④y=lnx是“依賴(lài)函數(shù)”;
⑤y=f(x),y=g(x)都是“依賴(lài)函數(shù)”,且定義域相同,則y=f(x).g(x)是“依賴(lài)函數(shù)”.
其中所有真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校數(shù)學(xué)課外小組在坐標(biāo)紙上,為學(xué)校的一塊空地設(shè)計(jì)植樹(shù)方案如下:第k棵樹(shù)種植在點(diǎn)Pk(xk,yk)處,其中x1=1,y1=1,當(dāng)k≥2時(shí),
xk=xk-1+1-5[T(
k-1
5
)-T(
k-2
5
)]
yk=yk-1+T(
k-1
5
)-T(
k-2
5
)
,T(a)表示非負(fù)實(shí)數(shù)a的整數(shù)部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵樹(shù)種植點(diǎn)的坐標(biāo)應(yīng)為
 
;第2013棵樹(shù)種植點(diǎn)的坐標(biāo)應(yīng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從10名女學(xué)生中選2名,40名男生中選3名,擔(dān)任五種不同的職務(wù),規(guī)定女生不擔(dān)任其中某種職務(wù),不同的分配方案有( 。
A、A102A403
B、C102A31A44C403
C、C152C403A55
D、C102C403

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=2n(n∈N*),現(xiàn)將該數(shù)列{an}的各項(xiàng)排列成如圖的三角數(shù)陣:記M(s,t)表示該數(shù)陣中第s行的第t個(gè)數(shù),則數(shù)陣中的偶數(shù)2010對(duì)應(yīng)于( 。
A、M(46,16)
B、M(46,25)
C、M(45,15)
D、M(45,25)

查看答案和解析>>

同步練習(xí)冊(cè)答案