如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,
(I)求證:;
(II)設(shè)線段、的中點分別為、,求證: ∥
(III)求二面角的大小。
解法一:
因為平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD=AB,
所以BC⊥平面ABEF.
所以BC⊥EF.
因為⊿ABE為等腰直角三角形,AB=AE,
所以∠AEB=45°,
又因為∠AEF=45,
所以∠FEB=90°,即EF⊥BE.
因為BC平面ABCD, BE平面BCE,
BC∩BE=B
所以
…………………………………………6分
(II)取BE的中點N,連結(jié)CN,MN,則MNPC
∴ PMNC為平行四邊形,所以PM∥CN.
∵ CN在平面BCE內(nèi),PM不在平面BCE內(nèi),
∴ PM∥平面BCE. …………………………………………8分
(III)由EA⊥AB,平面ABEF⊥平面ABCD,易知EA⊥平面ABCD.
作FG⊥AB,交BA的延長線于G,則FG∥EA.從而FG⊥平面ABCD,
作GH⊥BD于H,連結(jié)FH,則由三垂線定理知BD⊥FH.
∴ ∠FHG為二面角F-BD-A的平面角.
∵ FA=FE,∠AEF=45°,
∠AEF=90°, ∠FAG=45°.
設(shè)AB=1,則AE=1,AF=,則
在Rt⊿BGH中, ∠GBH=45°,BG=AB+AG=1+=,
,
在Rt⊿FGH中, ,
∴ 二面角的大小為
…………………………………………12分
解法二:如圖建立空間直角坐標(biāo)系,再進行證明計算.
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,。
(Ⅰ)求證:;
(Ⅱ)設(shè)線段的中點為,在直線上是否存在一點,使得?若存在,請指出點的位置,并證明你的結(jié)論;若不存在,請說明理由;
(Ⅲ)求二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,。
(Ⅰ)求證:;
(Ⅱ)設(shè)線段、的中點分別為、,求證:∥
(Ⅲ)求二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009四川卷文)(本小題滿分12分)
如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,
(I)求證:;
(II)設(shè)線段、的中點分別為、,求證: ∥
(III)求二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年遼寧省丹東市四校協(xié)作體高三第二次聯(lián)合考試理科數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
如圖,正方形所在平面與圓所在平面相交于,線段為圓的弦,垂直于圓所在平面,垂足是圓上異于.的點,,圓的直徑為9.
(I)求證:平面平面;
(II)求二面角的平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年山西省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
如圖,正方形所在平面與圓所在平面相交于,線段為圓的弦,垂直于圓所在平面,垂足是圓上異于的點,,圓的直徑為,
1)求證:平面平面2)求二面角的平面角的正切值.(12分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com