已知等差數(shù)列{an}中,a5+a7=16,a3=2,則a10=
 
考點:等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的通項公式求解.
解答: 解:∵等差數(shù)列{an}中,a5+a7=16,a3=2,
2a1+10d=16
a1+2d=2
,解得a1=-2,d=2,
∴a10=-2+9×2=16.
故答案為:16.
點評:本題考查數(shù)列的第10項的求法,解題時要認真審題,注意等差數(shù)列的性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某學校高一有男生350人,用隨機抽樣方法抽取150人的身高為樣本分析該校男生發(fā)育情況.頻率分布表和直方圖如下,但是某些數(shù)據(jù)丟失了,請你補出丟失內(nèi)容并回答下列問題.
(1)求a,b,c,d,e;  
(2)求頻率分布直方圖[170,175)的柱高.
(3)估計該校高一男生身高在[180,185)的學生數(shù).
分組頻數(shù)頻率
[160,165)9a
[165,170)b0.36
[170,175)66c
[175,180)d0.1
[180,185)6e
合計1501

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,滿足Sn=(-1)nan+
1
2n
,{Sn}的前n項和為Tn,則T2014=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x∈R,用[x]表示不超過x的最大整數(shù),已知函數(shù)f(x)=2x,g(x)=f-1(x),數(shù)列{an}的通項公式為an=
1
nf′(n)g′(n)
,n∈N+,Sn是該數(shù)列的前n項的和,則[Sn-
1
2
]等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察如圖數(shù)表,根據(jù)數(shù)表中的變化規(guī)律,2013位于數(shù)表中的第
 
行,第
 
列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直角△ABC中,BC為斜邊,且AC=4,AB=3,則
AC
CB
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從(0,2)中,隨機地取兩個數(shù),兩數(shù)之和小于0.8的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,BC=4,B=
π
3
且△ABC面積為2
3
,則角C大小為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文科)設斜率為2的直線l過拋物線y2=2px(p>0)的焦點F,且和y軸交于點A,若△OAF(O為坐標原點)的面積為4,則p的值為
 

查看答案和解析>>

同步練習冊答案