定義在R上的可導(dǎo)函數(shù) f(x)=x2 + 2xf′(2)+15,在閉區(qū)間[0,m]上有最大值15,最小值-1,
則m的取值范圍是(  )
A.m≥2B.2≤m≤4C.m≥4D.4≤m≤8
D

試題分析:由題可得,則,,故,由二次函數(shù)的最值可得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) (R).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)的圖象與軸有且只有一個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知處都取得極值.
(1)求,的值;
(2)設(shè)函數(shù),若對任意的,總存在,使得:,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),函數(shù)
(1)若函數(shù)的最小值為-2,求a的值;
(2)若函數(shù)上是單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=-x3+mx2+1(m≠0)在(0,2)內(nèi)的極大值為最大值,則m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知a≤+lnx對任意的x∈[,2]恒成立,則a的最大值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,且函數(shù)處有極值,則ab的最大值為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓柱的體積為16p cm3,則當(dāng)?shù)酌姘霃絩=     cm時(shí),圓柱的表面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某商品一件的成本為元,在某段時(shí)間內(nèi),若以每件元出售,可賣出件,
當(dāng)每件商品的定價(jià)為         元時(shí),利潤最大

查看答案和解析>>

同步練習(xí)冊答案