【題目】設(shè)Tn為數(shù)列{an}的前n項(xiàng)的積,即Tn=a1a2…an.
(1)若Tn=n2,求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}滿(mǎn)足Tn=(1﹣an)(n∈N*),證明數(shù)列為等差數(shù)列,并求{an}的通項(xiàng)公式;
(3)數(shù)列{an}共有100項(xiàng),且滿(mǎn)足以下條件:
①;
②(1≤k≤99,k∈N*).
(Ⅰ)求的值;
(Ⅱ)試問(wèn)符合條件的數(shù)列共有多少個(gè)?為什么?
【答案】(1) (2)(3)(Ⅰ)見(jiàn)解析(Ⅱ)299
【解析】
(1)(1)利用作商法求an;
(2)利用等差數(shù)列的定義證明數(shù)列為等差數(shù)列,并求得{an}的通項(xiàng)公式;
(3)(Ⅰ)由題意聯(lián)立方程組求得T4,T5,則由a5=即得;
(Ⅱ)由(Ⅰ)可得Tk是方程x2﹣(k+2)x+2=0的一個(gè)實(shí)根(△>0),當(dāng)數(shù)列前k(2≤k≤98)項(xiàng)確定后,其前k項(xiàng)積Tk確定,由Tk+1可得到兩個(gè)ak+1,即得符合條件的數(shù)列共有299個(gè).
(1)當(dāng)n=1時(shí),a1=T1=1;
當(dāng)n≥2時(shí),an=,
∴
(2)當(dāng)n=1時(shí),a1=T1=(1﹣a1),所以a1=,
當(dāng)n≥2時(shí),2Tn=1﹣an=1﹣,
所以﹣=2,數(shù)列{}為等差數(shù)列
=3+2(n﹣1)=2n+1,Tn=,an=1﹣2Tn=
(3)(Ⅰ)由,;可得T4=3±,
由,;可得T5=,
所以或或或
(Ⅱ),,所以a1=1或2
Tk是方程x2﹣(k+2)x+2=0的一個(gè)實(shí)根(其中△>0),
當(dāng)數(shù)列前k(2≤k≤98)項(xiàng)確定后,其前k項(xiàng)積Tk確定,由Tk+1可得到兩個(gè)ak+1
所以符合條件的數(shù)列共有299個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.四棱柱的底面是直角梯形,,,,四邊形和均為正方形.
(1)證明;平面平面ABCD;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,.
(1)求證:;
(2)若為線(xiàn)段上的一點(diǎn),,,,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問(wèn)題,擬定出臺(tái)“延遲退休年齡政策”.為了了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;
(2)從調(diào)查的100人中年齡在15~25,25~35兩組按分層抽樣的方法抽取6人參加某項(xiàng)活動(dòng)現(xiàn)從這6人中隨機(jī)抽2人,求這2人中至少1人的年齡在25~35之間的概率.
參考數(shù)據(jù):
其中n=a+b+c+d
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).,且.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)與函數(shù)在公共點(diǎn)處有相同的切線(xiàn),且在上恒成立.
(i)求和的值;(為函數(shù)的導(dǎo)函數(shù))
(ii)求實(shí)數(shù)n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)為了解學(xué)生對(duì)學(xué)校食堂服務(wù)的滿(mǎn)意度,隨機(jī)調(diào)查了50名男生和50名女生,每位學(xué)生對(duì)食堂的服務(wù)給出滿(mǎn)意或不滿(mǎn)意的評(píng)價(jià),得到如圖所示的列聯(lián)表.經(jīng)計(jì)算的觀測(cè)值,則可以推斷出( )
滿(mǎn)意 | 不滿(mǎn)意 | |
男 | 30 | 20 |
女 | 40 | 10 |
0.100 | 0.050 | 0.010 | |
2.706 | 3.841 | 6.635 |
A.該學(xué)校男生對(duì)食堂服務(wù)滿(mǎn)意的概率的估計(jì)值為
B.調(diào)研結(jié)果顯示,該學(xué)校男生比女生對(duì)食堂服務(wù)更滿(mǎn)意
C.有95%的把握認(rèn)為男、女生對(duì)該食堂服務(wù)的評(píng)價(jià)有差異
D.有99%的把握認(rèn)為男、女生對(duì)該食堂服務(wù)的評(píng)價(jià)有差異
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱的側(cè)棱垂直于底面,且,,,,是棱的中點(diǎn).
(1)證明:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,,,O為AC的中點(diǎn).
(1)證明:平面ABC;
(2)若點(diǎn)M在棱BC上,且,求點(diǎn)C到平面POM的距離.
(3)若點(diǎn)M在棱BC上,且二面角為30°,求PC與平面PAM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了解廣告投入對(duì)銷(xiāo)售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷(xiāo)售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開(kāi)始計(jì)數(shù)的. [附:回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為.]
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;
(2)試估計(jì)該公司投入萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷(xiāo)售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類(lèi)似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 (單位:萬(wàn)元) | 1 | 2 | 3 | 4 | 5 |
銷(xiāo)售收益 (單位:萬(wàn)元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與之間存在著線(xiàn)性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線(xiàn)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com