精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示的程序框圖,它的輸出結果是(

A.﹣1
B.0
C.1
D.16

【答案】A
【解析】解:模擬執(zhí)行程序,可得
k=0,x=0
滿足條件k≤15,執(zhí)行循環(huán)體,y=0,x= ,k=1
滿足條件k≤15,執(zhí)行循環(huán)體,y=1,x=π,k=2
滿足條件k≤15,執(zhí)行循環(huán)體,y=0,x= ,k=3
滿足條件k≤15,執(zhí)行循環(huán)體,y=﹣1,x=2π,k=4
滿足條件k≤15,執(zhí)行循環(huán)體,y=0,x= ,k=5
滿足條件k≤15,執(zhí)行循環(huán)體,y=1,x=3π,k=6

觀察規(guī)律可知,y的取值周期為4,由于,15=4×3+3,可得
滿足條件k≤15,執(zhí)行循環(huán)體,y=﹣1,x=8π,k=16
此時,不滿足條件k≤15,退出循環(huán),輸出y的值為﹣1.
故選:A.
【考點精析】解答此題的關鍵在于理解程序框圖的相關知識,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖所示程序框圖,若輸入a,b,i的值分別為6,4,1,則輸出a和i的值分別為(

A.2,4
B.3,4
C.2,5
D.2,6

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸),一位居民的月用水量不超過的部分按平價收費,超過的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照 , 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中的值;

(Ⅱ)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數為,求的分布列與數學期望.

(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值(精確到0.01),并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某休閑農莊有一塊長方形魚塘ABCD,AB=50米,BC=25 米,為了便于游客休閑散步,該農莊決定在魚塘內建三條如圖所示的觀光走廊OE、EF和OF,考慮到整體規(guī)劃,要求O是AB的中點,點E在邊BC上,點F在邊AD上,且∠EOF=90°.

(1)設∠BOE=α,試將△OEF的周長l表示成α的函數關系式,并求出此函數的定義域;
(2)經核算,三條走廊每米建設費用均為4000元,試問如何設計才能使建設總費用最低并求出最低總費用.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】梯形ABCD頂點B、C在以AD為直徑的圓上,AD=2米,

(1)如圖1,若電熱絲由AB,BCCD這三部分組成,在AB,CD上每米可輻射1單位熱量,在BC上每米可輻射2單位熱量,請設計BC的長度,使得電熱絲輻射的總熱量最大,并求總熱量的最大值;

(2)如圖2,若電熱絲由弧和弦BC這三部分組成,在弧上每米可輻射1單位熱量,在弦BC上每米可輻射2單位熱量,請設計BC的長度,使得電熱絲輻射的總熱量最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對兩個變量y和x進行回歸分析,得到一組樣本數據:(x1 , y1),(x2 , y2),…,(xn , yn),則下列說法中不正確的是(
A.由樣本數據得到的回歸方程 = x+ 必過樣本中心( ,
B.殘差平方和越小的模型,擬合的效果越好
C.用相關指數R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好
D.兩個隨機變量的線性相關性越強,相關系數的絕對值越接近于1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了檢驗學習情況,某培訓機構于近期舉辦一場競賽活動,分別從甲、乙兩班各抽取10名學員的成績進行統(tǒng)計分析,其成績的莖葉圖如圖所示(單位:分),假設成績不低于90分者命名為“優(yōu)秀學員”.

(1)分別求甲、乙兩班學員成績的平均分(結果保留一位小數);

(2)從甲班4名優(yōu)秀學員中抽取兩人,從乙班2名80分以下的學員中抽取一人,求三人平均分不低于90分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ex﹣ax﹣1,(a為實數),g(x)=lnx﹣x
(1)討論函數f(x)的單調區(qū)間;
(2)求函數g(x)的極值;
(3)求證:lnx<x<ex(x>0)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1=1,an+1=2an﹣3(﹣1)n(n∈N*).
(1)若bn=a2n﹣1,求證:bn+1=4bn;
(2)求數列{an}的通項公式;
(3)若a1+2a2+3a3+…+nan>λ2n對一切正整數n恒成立,求實數λ的取值范圍.

查看答案和解析>>

同步練習冊答案