精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系xOy中,曲線C1的參數方程為 為參數),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為
(1)求曲線C1 , C2的直角坐標方程;
(2)已知點P,Q分別是線C1 , C2的動點,求|PQ|的最小值.

【答案】
(1)解:曲線C1的參數方程為 為參數),

可得: ,sinα=y,

故得C1直角坐標方程 ,

曲線C2的極坐標方程為

則ρsinθ+ρcosθ=4

∵ρsinθ=y,ρcosθ=x,

∴x+y=4.

故得C2的直角坐標方程為:x+y﹣4=0


(2)解:設

即|PQ|的最小值為


【解析】(1)根據同角三角函數關系式,消去參數,可得C1直角坐標方程.利用ρsinθ=y,ρcosθ=x化簡可得C2的直角坐標方程;(2)設P的坐標( ,sinα),利用點到直線的距離公式和三角函數的有界限,求解|PQ|的最小值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列說法正確的是( ).

A. ,“”是“”的必要不充分條件

B. 為真命題”是“為真命題” 的必要不充分條件

C. 命題“,使得”的否定是:“

D. 命題:“”,則是真命題

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】等差數列{an}的各項均為正數,a1=3,前n項和為Sn,{bn}為等比數列,b1=1,且b2S2=64,b3S3=960.

(1)anbn

(2)

【答案】(1)an=2n+1,bn=8n1.(2)

【解析】

(1)設{an}的公差為d,{bn}的公比為q,由題設條件建立方程組,解方程組得到dq的值,從而求出anbn;(2)由Sn=n(n+2),知,由此可求出的值.

(1){an}的公差為d,{bn}的公比為q,則d為正數,

an=3+(n-1)d,bnqn1,

依題意有,

解得 (舍去).

an=3+2(n-1)=2n+1,bn=8n1.

(2)Sn=3+5+…+(2n+1)=n(n+2).

所以+…++…+

(1-+…+)

(1+)

.

【點睛】

這個題目考查的是數列通項公式的求法及數列求和的常用方法;數列通項的求法中有常見的已知的關系,求表達式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數列求和常用法有:錯位相減,裂項求和,分組求和等。

型】解答
束】
21

【題目】已知函數f(x)滿足f(xy)=f(xf(y),且f(1)=.

(1)nN,求f(n)的表達式;

(2)annf(n),nN,求證:a1a2+…+an<2.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知有限集,如果A中元素,滿足,就稱A創(chuàng)新集;

1)若,試寫出一個二元創(chuàng)新集A;

2)若,且是二元創(chuàng)新集,求的取值范圍;

3)若是正整數,求出所有的創(chuàng)新集;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的函數f(x),滿足 ,且f(3)=f(1)﹣1.
(1)求實數k的值;
(2)若函數g(x)=f(x)+f(﹣x)(﹣2≤x≤2),求g(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2cos(ωx﹣φ)(ω>0,φ∈[0,π])的部分圖象如圖所示,若A( ),B( ).則下列說法錯誤的是(

A.φ=
B.函數f(x)的一條對稱軸為x=
C.為了得到函數y=f(x)的圖象,只需將函數y=2sin2x的圖象向右平移 個單位
D.函數f(x)的一個單調減區(qū)間為[ ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照[0,0.5),[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數,并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=f(x)(x∈R)d的導函數為f′(x),若f(x)﹣f(﹣x)=2x3 , 且當x≥0時,f′(x)>3x2 , 則不等式f(x)﹣f(x﹣1)>3x2﹣3x+1的解集是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知 , ,
(Ⅰ)求b和c;
(Ⅱ)求sin(A﹣B)的值.

查看答案和解析>>

同步練習冊答案