4.如圖,三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,底面邊長和側(cè)棱長均為2,D,D1分別是BC,B1C1的中點.
(1)求證:AD⊥C1D;
(2)求證:平面ADC1∥平面A1D1B.

分析 (1)線面垂直的判定定理證明即可;
(2)根據(jù)面面平行的判定定理證明即可.

解答 (1)證明:∵底面邊長均為2,D是BC中點,∴AD⊥BC-----------------(1分)
∵三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,AD?平面ABC,
∴AD⊥BB1---------------(2分)
∵BC?平面B1BCC1,BB1?平面B1BCC1,BC∩BB1=B,
∴AD⊥平面B1BCC1,--------------(3分)
∵DC1?面B1BCC1
∴AD⊥DC1-----------(4分)
(2)證明:連結(jié)A1C交于AC1O,連結(jié)DO,如圖示:
∵O是正方形ACC1A1對角線的交點
∴O為A1C中點
∵D是BC的中點
∴OD∥A1B,且OD?平面ADC1,A1B?平面ADC1--------------(6分)
∴A1B∥平面ADC1-------------------(7分)
∵D,D1分別是BC,B1C1的中點,
∴AA1∥DD1,AA1=DD1,
∴四邊形AA1D1D是平行四邊形
∴AD∥A1D1-----(9分)
∵A1D1?平面ADB1,AD?平面ADB1,
∴A1D1∥平面ADB1---------(10分)
∵A1D1∩A1B=A1,
∴平面ADC1∥平面A1D1B-----------------(12分)

點評 本題考查了線面垂直的判定定理以及面面平行的判定定理,考查數(shù)形結(jié)合思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C滿足:過橢圓C的右焦點F($\sqrt{2}$,0)且經(jīng)過短軸端點的直線的傾斜角為$\frac{π}{4}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點,若點A在直線y=2上,點B在橢圓C上,且OA⊥OB,求線段AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$;g(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+$\frac{{x}^{4}}{4}$-…-$\frac{{x}^{2015}}{2015}$;設(shè)函數(shù)F(x)=[f(x+3)]•[g(x-4)],且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b-a的最小值為( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x-2x-b(b為常數(shù)),則f(-1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.等式$\sqrt{\frac{x}{x-2}}=\frac{\sqrt{x}}{\sqrt{x-2}}$成立的條件是( 。
A.x≠2B.x>0C.x>2D.0<x<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直三棱柱ABC-A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F是A1C1、BC的中點.證明:
(1)C1F∥面ABE;
(2)證明:平面AEB⊥平面BB1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若sin2A,sin2B,sin2C成等差數(shù)列.
(1)求tanA+3tanC的最小值;
(2)在(1)中取最小值的條件下,若$c=2\sqrt{10}$,求S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知O(0,0,0),A(-2,2,-2),B(1,4,-6),C(x,-8,8),若OC⊥AB,則x=16;若O、A、B、C四點共面,則x=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=$\frac{3sinx}{2cosx+1}$的定義域是( 。
A.{x|x∈R}B.{x|x≠2kπ+$\frac{2π}{3}$}
C.{x|x$≠2kπ+\frac{4π}{3},k∈Z$}D.{x|x≠2kπ+$\frac{2}{3}$π且x≠2kπ+$\frac{4}{3}π$,k∈Z]

查看答案和解析>>

同步練習(xí)冊答案