(本小題滿分12分)

PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物。我國PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35微克/立方米75微克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo).

某試點(diǎn)城市環(huán)保局從該市市區(qū)2011年全年每天的PM2.5監(jiān)測(cè)數(shù)據(jù)中隨機(jī)的抽取15天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值如莖葉圖所示(十位為莖,個(gè)位為葉)

(I)從這15天的PM2.5日均監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽出三天,求恰有一天空氣質(zhì)量達(dá)到一級(jí)的概率;

(II)從這15天的數(shù)據(jù)中任取三天數(shù)據(jù),記表示抽到PM2.5監(jiān)測(cè)數(shù)據(jù)超標(biāo)的天數(shù),求的分布列;

(III)以這15天的PM2.5日均值來估計(jì)一年的空氣質(zhì)量情況,則一年(按360天計(jì)算)中平均有多少天的空氣質(zhì)量達(dá)到一級(jí)或二級(jí).

 

【答案】

解:(Ⅰ) .      

(Ⅱ)

 

 

 

 

 

(Ⅲ)一年中平均有240天的空氣質(zhì)量達(dá)到一級(jí)或二級(jí).

【解析】本試題主要考查了古典概型概率的計(jì)算,以及分布列的求解和數(shù)學(xué)期望值的運(yùn)算的綜合運(yùn)用。

(1)由于假設(shè)記“從15天的PM2.5日均監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽出三天,恰有一天空氣質(zhì)量達(dá)到一級(jí)”為事件A,則根據(jù)所有的基本事件數(shù)和事件A發(fā)生的基本事件數(shù),的比值得到。

(2)在第一問的基礎(chǔ)上,進(jìn)一步分析,隨機(jī)變量服從超幾何分布,利用概率公式得到分布列和期望值的運(yùn)用問題。

解:(Ⅰ)記“從15天的PM2.5日均監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽出三天,恰有一天空氣質(zhì)量達(dá)到一級(jí)”為事件,…………1分

.        ……………………………………4分

(Ⅱ)依據(jù)條件,服從超幾何分布:其中,的可能值為,其分布列為:.…………6分

 

……………………8分

 

 

 

 

 

 

(Ⅲ)依題意可知,一年中每天空氣質(zhì)量達(dá)到一級(jí)或二級(jí)的概率為,

一年中空氣質(zhì)量達(dá)到一級(jí)或二級(jí)的天數(shù)為,則~.…………10分

,一年中平均有240天的空氣質(zhì)量達(dá)到一級(jí)或二級(jí).…… 12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案