14.以下五個(gè)說(shuō)法:
①函數(shù)y=x2在R上是增函數(shù).   
②函數(shù)$y=\frac{1}{x}$的單調(diào)遞減區(qū)間是(-∞,0)∪(0,+∞).
③實(shí)數(shù)集可以表示為{R}.  
④方程$\sqrt{2x-1}+|{2y+1}|=0$的解集是$\{(\frac{1}{2},-\frac{1}{2})\}$.
⑤集合M={y|y=x2+1,x∈R}與集合N={(x,y)|y=x2+1,x∈R}表示同一個(gè)集合.
其中正確的命題序號(hào)是④.

分析 ①根據(jù)函數(shù)圖象直接判斷;
②(-∞,0)和(0,+∞)是兩個(gè)集合,(-∞,0)∪(0,+∞)是一個(gè)區(qū)間;
③R表示一集合,不能寫(xiě)成{R}.  
④兩個(gè)非負(fù)數(shù)和等于零的問(wèn)題,每一個(gè)式子都為零;解集是一組解;
⑤集合中要看代表元素是什么.

解答 ①根據(jù)圖形可知,函數(shù)y=x2在(0,+∞)上是增函數(shù),故錯(cuò)誤;   
②函數(shù)$y=\frac{1}{x}$的單調(diào)遞減區(qū)間是(-∞,0)和(0,+∞),是兩個(gè)減區(qū)間,但在整個(gè)區(qū)間上不單調(diào),故錯(cuò)誤.
③實(shí)數(shù)集可以表示為R,R本身即是一集合,故錯(cuò)誤;  
④方程$\sqrt{2x-1}+|{2y+1}|=0$,
∴$\sqrt{2x-1}$=0,2y+1=0,
∴解集是$\{(\frac{1}{2},-\frac{1}{2})\}$,故正確;
⑤集合M={y|y=x2+1,x∈R}表示的是數(shù)集,集合N={(x,y)|y=x2+1,x∈R}表示的是點(diǎn)集,
故錯(cuò)誤.
故答案為④.

點(diǎn)評(píng) 考查了集合的表示方法,單調(diào)區(qū)間的表示,兩個(gè)非負(fù)數(shù)和等于零的問(wèn)題.屬于常規(guī)題型,應(yīng)熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知$\overrightarrow m=(a,b)$,$\overrightarrow{n}$=(2sinx,2cosx),其中a,b,x∈R.若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,滿足f($\frac{π}{3}$)=2,且f(x)的導(dǎo)函數(shù)f′(x)的圖象關(guān)于直線x=$\frac{5π}{6}$對(duì)稱.
(1)求a,b的值;
(2)若關(guān)于x的方程f(x)+log2k=0在區(qū)間[0,$\frac{π}{2}$]上總有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列命題中的說(shuō)法正確的是( 。
A.若向量$\overrightarrow{a}$∥$\overrightarrow$,則存在唯一的實(shí)數(shù)λ使得$\overrightarrow a=λ\overrightarrow b$
B.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
C.命題“?x0∈R,使得${x_0}^2+{x_0}+1<0$”的否定是:“?x∈R,均有x2+x+1≥0”
D.“a≠5且b≠-5”是“a+b≠0”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知拋物線C的頂點(diǎn)是橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的中心,焦點(diǎn)與該橢圓的右焦點(diǎn)F2重合,若拋物線C與該橢圓在第一象限的交點(diǎn)為P,橢圓的左焦點(diǎn)為F1,則|PF1|=(  )
A.$\frac{2}{3}$B.$\frac{7}{3}$C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x,}&{x≤2}\\{{{log}_2}x-1,}&{x>2}\end{array}}\right.$,則f(f(4))=1,函數(shù)f(x)的單調(diào)遞減區(qū)間是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知f(x)的定義域?yàn)閇1,2],則f(x-1)的定義域?yàn)椋ā 。?table class="qanwser">A.[1,2]B.[0,1]C.[2,3]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如果函數(shù)y=logax在區(qū)間[2,+∞)上恒有y>1,那么實(shí)數(shù)a的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.拋擲甲,乙兩枚質(zhì)地均勻且四面上分別標(biāo)有1,2,3,4的正四面體,其底面落于桌面,記所得數(shù)字分別為x,y.設(shè)ξ為隨機(jī)變量,若$\frac{x}{y}$為整數(shù),則ξ=0;若$\frac{x}{y}$為小于1的分?jǐn)?shù),則ξ=-1;若$\frac{x}{y}$為大于1的分?jǐn)?shù),則ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)偶函數(shù)f(x)滿足f(x)=2x-4(x≥0),若f(x-2)>0,則x的取值范圍是(  )
A.(-∞,0)B.(0,4)C.(4,+∞)D.(-∞,0)∪(4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案