A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | 1 | D. | 2 |
分析 設|AF|=a,|BF|=b,連接AF、BF.由拋物線定義得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2-3ab,進而根據(jù)基本不等式,求得|AB|的取值范圍,從而得到本題答案.
解答 解:設|AF|=a,|BF|=b,
由拋物線定義,得AF|=|AQ|,|BF|=|BP|
在梯形ABPQ中,∴2|MN|=|AQ|+|BP|=a+b.
由余弦定理得,
|AB|2=a2+b2-2abcos60°=a2+b2-ab
配方得,|AB|2=(a+b)2-3ab,
又∵ab≤($\frac{a+b}{2}$) 2,
∴(a+b)2-3ab≥(a+b)2-$\frac{3}{4}$(a+b)2=$\frac{1}{4}$(a+b)2
得到|AB|≥$\frac{1}{2}$(a+b).
∴$\frac{|MN|}{|AB|}$≤1,即$\frac{|MN|}{|AB|}$的最大值為1.
故選C.
點評 本題著重考查拋物線的定義和簡單幾何性質(zhì)、基本不等式求最值和余弦定理的應用等知識,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | a2+b2+c2≥2 | B. | (a+b+c)2≥3 | C. | $\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$≥2$\sqrt{3}$ | D. | a+b+c≤$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f (3)<f′(2)+f (2) | B. | f (3)>f′(3)+f (2) | C. | f (2)>f′(2)+f (1) | D. | f (2)>f′(1)+f (1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | p2 | B. | $\sqrt{3}$p2 | C. | 2p2 | D. | 2$\sqrt{3}$p2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-3]∪[1,+∞) | B. | [-3,1] | ||
C. | (-∞,-3]∪[1,$\frac{3}{2}$)∪($\frac{3}{2}$,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com