【題目】已知函數(shù)是
的導(dǎo)函數(shù).
(Ⅰ)當(dāng)時(shí),對于任意的
,求
的最小值;
(Ⅱ)若存在,使
,求
的取值范圍.
【答案】(1)最小值為-11.(2)
【解析】試題分析:(1)欲求的最小值,就分別求
的最小值
(2)存在,使
即尋找
是變量
的范圍.
試題解析:
解:(Ⅰ)由題意得.
令,得
或
.
當(dāng)在[-1,1]上變化時(shí),
,
隨
的變化情況如下表:
-1 | (-1,0) | 0 | (0,1) | 1 | |
-7 | - | 0 | 1 | ||
-1 | -4 | -3 |
∴對于,
的最小值為
.
∵的對稱軸為直線
,且拋物線開口向下,
∴對于,
的最小值為
.
∴的最小值為-11.
(Ⅱ)∵.
①若,當(dāng)
時(shí),
.
∴在
上單調(diào)遞減.
又,則當(dāng)
時(shí),
.
∴當(dāng)時(shí),不存在
,使
.
②若,則當(dāng)
時(shí),
;當(dāng)
時(shí),
.
從而在
上單調(diào)遞增,在
上單調(diào)遞減.
∴當(dāng)時(shí),
.
根據(jù)題意,得,即
,解得
.
綜上,的取值范圍是
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種水杯,每個(gè)水杯的原材料費(fèi)、加工費(fèi)分別為30元、m元(m為常數(shù),且2≤m≤3),設(shè)每個(gè)水杯的出廠價(jià)為x元(35≤x≤41),根據(jù)市場調(diào)查,水杯的日銷售量與ex(e為自然對數(shù)的底數(shù))成反比例,已知每個(gè)水杯的出廠價(jià)為40元時(shí),日銷售量為10個(gè).
(1)求該工廠的日利潤y(元)與每個(gè)水杯的出廠價(jià)x(元)的函數(shù)關(guān)系式;
(2)當(dāng)每個(gè)水杯的出廠價(jià)為多少元時(shí),該工廠的日利潤最大,并求日利潤的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視臺(tái)播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時(shí),需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時(shí),連續(xù)劇播放時(shí)長、廣告播放時(shí)長、收視人次如下表所示:
連續(xù)劇播放時(shí)長(分鐘) | 廣告播放時(shí)長(分鐘) | 收視人次(萬) | |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
已知電視臺(tái)每周安排的甲、乙連續(xù)劇的總播放時(shí)間不多于600分鐘,廣告的總播放時(shí)間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用,
表示每周計(jì)劃播出的甲、乙兩套連續(xù)劇的次數(shù).
(1)用,
列出滿足題目條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)問電視臺(tái)每周播出甲、乙兩套連續(xù)劇各多少次,才能使收視人次最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)三個(gè)向量: =(3,2),
=(﹣1,2),
=(4,1)
(1)若( +k
)∥(2
﹣
),求實(shí)數(shù)k的值;
(2)設(shè) =(x,y),且滿足(
+
)⊥(
﹣
),|
﹣
|=
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=4x的焦點(diǎn)為F,過點(diǎn)F的直線l與C相交于A,B兩點(diǎn),若|AB|=8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:不等式(m-1)x2+(m-1)x+2>0的解集是R,命題q:sin x+cos x>m.如果對于任意的x∈R,命題p是真命題且命題q為假命題,求m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,底面
為矩形,
,
,
,
,
為棱
上一點(diǎn),平面
與棱
交于點(diǎn)
.
(Ⅰ)求證: ;
(Ⅱ)求證: ;
(Ⅲ)若,試問平面
是否可能與平面
垂直?若能,求出
值;若不能,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),
軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位,已知直線
的參數(shù)方程為
,(
為參數(shù),
),曲線
的極坐標(biāo)方程為
.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線
相交于
,
兩點(diǎn),當(dāng)
變化時(shí),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓關(guān)于直線
對稱的圓為
.
(1)求圓的方程;
(2)過點(diǎn)作直線
與圓
交于
兩點(diǎn),
是坐標(biāo)原點(diǎn),是否存在這樣的直線
,使得在平行四邊形
中
?若存在,求出所有滿足條件的直線
的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com