15.利用三角函數(shù)線,寫出滿足下列條件的角x的集合.
(1)sinx≥$\frac{\sqrt{2}}{2}$;
(2)cosx≤$\frac{1}{2}$;
(3)tanx≥-1;
(4)sinx>$\frac{1}{2}$且cosx>$\frac{1}{2}$.

分析 作出單位圓,由三角函數(shù)值先求出角在[0,2π]內(nèi)的取值范圍,再由終邊相同的角的概念加上周期,由此能求出滿足條件的角x的集合.

解答 解:(1)由sinx$≥\frac{\sqrt{2}}{2}$,作出單位圓,如下圖,

∵sinx$≥\frac{\sqrt{2}}{2}$,∴$\frac{π}{4}≤x≤\frac{3π}{4}$,
∴滿足sinx≥$\frac{\sqrt{2}}{2}$的角x的集合為{x|2kπ+$\frac{π}{4}$$≤x≤2kπ+\frac{3π}{4}$,k∈Z}.
(2)由cosx≤$\frac{1}{2}$,作出單位圓,如下圖,

∵cosx≤$\frac{1}{2}$,∴$\frac{π}{3}≤x≤\frac{5π}{3}$,
∴滿足cosx≤$\frac{1}{2}$的角x的集合為{x|2kπ+$\frac{π}{3}$≤x≤2kπ+$\frac{5π}{3}$,k∈Z}.
(3)由tanx≥-1,作出單位圓,如下圖,

∵tanx≥-1,∴-$\frac{π}{4}$≤x<$\frac{π}{2}$,
∴滿足tanx≥-1的角x的集合為{x|kπ-$\frac{π}{4}$$≤x<kπ+\frac{π}{2}$,k∈Z}.
(4)由sinx>$\frac{1}{2}$且cosx>$\frac{1}{2}$,作出單位圓,如下圖,

∵sinx>$\frac{1}{2}$且cosx>$\frac{1}{2}$,∴$\frac{π}{6}<x<\frac{π}{3}$,
∴滿足sinx>$\frac{1}{2}$且cosx>$\frac{1}{2}$x的集合為{x|2kπ+$\frac{π}{6}$$<x<2kπ+\frac{π}{3}$,k∈Z}.

點評 本題考查角的取值范圍的求法,是基礎(chǔ)題,解題時要注意單位圓和三角函數(shù)線的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.下列四種說法:
①命題“$若α=\frac{π}{6},則sinα=\frac{1}{2}$的否命題是假命題;
②p:?x0∈R,使sinx0>1,則?p:?x∈R,sinx≤1;
③“$α=\frac{π}{2}+2kπ(k∈Z)$”是“函數(shù)y=sin(2x+α)為偶函數(shù)”的充要條件;
④命題p:“?x∈(0,$\frac{π}{2}$),使sinx+cosx=$\frac{1}{2}$”,命題q:
“在△ABC中,若sinA>sinB,則A>B”,那么命題(¬p)∧q為真命題.
其中正確的說法是①②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.“點P到兩條坐標軸距離相等”是“點P的軌跡方程為y=|x|”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.不充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{{4}^{x}}{2+{4}^{x}}$.
(1)用定義證明,函數(shù)f(x)是R上的增函數(shù);
(2)證明:對于任意實數(shù)r,都有f(t)+f(1-t)=1;
(3)求值:f($\frac{1}{2013}$)+f($\frac{2}{2013}$)+f($\frac{3}{2013}$)+…+f($\frac{2012}{2013}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{\sqrt{1-{x}^{2}}}{|x+2|-2}$.
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.過點P(2,-3),且傾斜角為120°的直線方程為$\sqrt{3}$x+y+3-2$\sqrt{3}$=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.鐵路線旁邊有一沿鐵路方向的公路,在公路上行駛的一輛拖拉機司機只看見迎面駛來的一列貨車從車頭到車尾經(jīng)過他身旁共用了15秒,已知貨車車速為60千米/時,全長345米.求拖拉機的速度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如果θ是第二象限的角,求證sin(cosθ)•cos(sinθ)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)f(x)=ln(1-2x)的單調(diào)減區(qū)間是(-$∞,\frac{1}{2}$).

查看答案和解析>>

同步練習冊答案