【題目】設(shè)數(shù)列的前項和為,且.令.

(1)求的通項公式;

(2)若,且數(shù)列的前項和為,求.

【答案】12

【解析】試題分析:(1)由可得,兩式相減可得,利用“累乘法”即可得的通項公式,進(jìn)而可求的通項公式;(2)利用(1)可得數(shù)列的通項公式, ,根據(jù)錯位相減法可得結(jié)果.

試題解析:(1)當(dāng)時,

.

,∴),.

(2),

所以

作差得,

.

方法點睛】本題主要考查由遞推公式求數(shù)列的通項以及錯位相減法求數(shù)列的的前 項和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列, 是等比數(shù)列,求數(shù)列的前項和時,可采用錯位相減法求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫出的表達(dá)式時應(yīng)特別注意將兩式錯項對齊以便下一步準(zhǔn)確寫出的表達(dá)式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),若對任意x1∈R,都存在x2∈[﹣2,+∞),使得f(x1)>g(x2),則實數(shù)a的取值范圍是(
A.
B.(0,+∞)
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位: )有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶,為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;

(2)設(shè)六月份一天銷售這種酸奶的利潤為(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量(單位:瓶)為多少時, 的數(shù)學(xué)期望達(dá)到最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有8名奧運會志愿者,其中志愿者 通曉日語, 通曉俄語, 通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.

)求 被選中的概率;

)求 不全被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】x、y滿足約束條件 ,若z=y﹣ax取得最大值的最優(yōu)解不唯一,則實數(shù)a的值為(
A. 或﹣1
B.2或
C.2或1
D.2或﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題P:將函數(shù)sin2x的圖象向右平移 個單位得到函數(shù)y=sin(2x﹣ )的圖象;命題Q:函數(shù)y=sin(x+ )cos( ﹣x)的最小正周期是π,則復(fù)合命題“P或Q”“P且Q”“非P”為真命題的個數(shù)是個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時,求的單調(diào)區(qū)間;

(2)若的圖象與軸交于兩點,起,求的取值范圍;

(3)在(2)的條件下,求證.

(參考知識:若,則有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績是否與性別有關(guān),先統(tǒng)計本校高三年級每個學(xué)生一學(xué)期數(shù)學(xué)成績平均分(采用百分制),剔除平均分在30分以下的學(xué)生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績分為6組,得到如下所示頻數(shù)分布表.

分?jǐn)?shù)段

[40,50)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

3

9

18

15

6

9

6

4

5

10

13

2

(I)估計男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點值作代表),從計算結(jié)果看,能否判斷數(shù)學(xué)成績與性別有關(guān);

(II)規(guī)定80分以上為優(yōu)分(含80分),請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%以上的把握認(rèn)為“數(shù)學(xué)成績與性別有關(guān)”. (,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(x+1)﹣f(x)=﹣2x+1且f(2)=15.
(1)求函數(shù)f(x)的解析式;
(2)令g(x)=(2﹣2m)x﹣f(x);
①若函數(shù)g(x)在x∈[0,2]上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
②求函數(shù)g(x)在x∈[0,2]的最小值.

查看答案和解析>>

同步練習(xí)冊答案