【題目】已知x1 , x2是函數(shù)f(x)=2sin2x+cos2x﹣m在[0, ]內(nèi)的兩個零點,則sin(x1+x2)=

【答案】
【解析】解:x1 , x2是函數(shù)f(x)=2sin2x+cos2x﹣m在[0, ]內(nèi)的兩個零點, 可得m=2sin2x1+cos2x1=2sin2x2+cos2x2 ,
即為2(sin2x1﹣sin2x2)=﹣cos2x1+cos2x2
即有4cos(x1+x2)sin(x1﹣x2)=﹣2sin(x2+x1)sin(x2﹣x1),
由x1≠x2 , 可得sin(x1﹣x2)≠0,
可得sin(x2+x1)=2cos(x1+x2),
由sin2(x2+x1)+cos2(x1+x2)=1,
可得sin(x2+x1)=± ,
由x1+x2∈[0,π],
即有sin(x2+x1)=
所以答案是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場為一種躍進商品進行合理定價,將該商品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

單位(元)

8

8.2

8.4

8.6

8.8

9

銷量(件)

90

84

83

80

75

68

(1)按照上述數(shù)據(jù),求四歸直線方程,其中;

(2)預(yù)計在今后的銷售中,銷量與單位仍然服從(Ⅰ)中的關(guān)系,若該商品的成本是每件7.5元,為使商場獲得最大利潤,該商品的單價應(yīng)定為多少元?(利潤=銷售收入﹣成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,A1B與AB1交于點D,A1C與AC1交于點E.求證:
(1)DE∥平面B1BCC1
(2)平面A1BC⊥平面A1ACC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,∠ACB=90°,CC1⊥底面ABC,AC=BC=CC1=2,D,E,F(xiàn)分別是棱AB,BC,B1C1的中點,G是棱BB1上的動點.
(1)當(dāng) 為何值時,平面CDG⊥平面A1DE?
(2)求平面AB1F與平面AD1E所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)和動直線l:y=kx+b(k,b是參變量,且k≠0.b≠0)相交于A(x1 , y2),N)x2 , y2)兩點,直角坐標(biāo)系原點為O,記直線OA,OB的斜率分別為kOAkOB= 恒成立,則當(dāng)k變化時直線l恒經(jīng)過的定點為(
A.(﹣ p,0)
B.(﹣2 p,0)
C.(﹣ ,0)
D.(﹣ ,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,該幾何體是由一個直三棱柱ADE﹣BCF和一個正四棱錐P﹣ABCD組合而成,AD⊥AF,AE=AD=2.
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店為了更好地規(guī)劃某種商品進貨的量,該商店從某一年的銷售數(shù)據(jù)中,隨機抽取了組數(shù)據(jù)作為研究對象,如下圖所示((噸)為該商品進貨量, (天)為銷售天數(shù)):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點圖;

Ⅱ)根據(jù)上表提供的數(shù)據(jù),求出關(guān)于的線性回歸方程

(Ⅲ)在該商品進貨量(噸)不超過6(噸)的前提下任取兩個值,求該商品進貨量x(噸)恰有一個值不超過3(噸)的概率.

參考公式和數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E:y2=8x,圓M:(x﹣2)2+y2=4,點N為拋物線E上的動點,O為坐標(biāo)原點,線段ON的中點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)點Q(x0 , y0)(x0≥5)是曲線C上的點,過點Q作圓M的兩條切線,分別與x軸交于A,B兩點,求△QAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:“有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?”根據(jù)上題的已知條件,若要使織布的總尺數(shù)不少于20尺,該女子所需的天數(shù)至少為

查看答案和解析>>

同步練習(xí)冊答案