分析 (1)利用兩角和的正弦函數(shù),化簡函數(shù)的解析式,利用正弦函數(shù)的單調(diào)性求解函數(shù)的單調(diào)增區(qū)間即可.
(2)(2)利用五點(diǎn)作圖法作出f(x)在一個周期內(nèi)的圖象;
解答 解:(1)∵f(x)=2($\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)=2sin(x+$\frac{π}{3}$),
∴由2kπ-$\frac{π}{2}$≤x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,
解得:2kπ-$\frac{5π}{6}$≤x≤2kπ+$\frac{π}{6}$,k∈Z,
所以函數(shù)的遞增區(qū)間為[2kπ-$\frac{5π}{6}$,2kπ+$\frac{π}{6}$],k∈Z …(12分)
(2)列表:
x | -$\frac{π}{3}$ | $\frac{π}{6}$ | $\frac{2π}{3}$ | $\frac{7π}{6}$ | $\frac{5π}{3}$ |
x+$\frac{π}{3}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
y=2sin(x+$\frac{π}{3}$) | 0 | 2 | 0 | -2 | 0 |
點(diǎn)評 本題主要考查三角函數(shù)的圖象和性質(zhì),以及五點(diǎn)作圖法,利用輔助角公式進(jìn)行化簡是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,$\frac{1}{2}$,1) | B. | (0,0,1) | C. | (1,$\frac{1}{2}$,1) | D. | (1,$\frac{1}{2}$,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | … | -2 | 0 | 1 | 2 | 3 | … |
y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,f(x)≠0且g(x)≠0 | B. | ?x∈R,f(x)≠0或g(x)≠0 | ||
C. | ?x0∈R,f(x0)≠0且g(x0)≠0 | D. | ?x0∈R,f(x0)≠0或g(x0)≠0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com