2.已知函數(shù)$f(x)=cosx•cos(x-\frac{π}{3})$.
(1)求函數(shù)f(x)的單調增區(qū)間;
(2)若直線y=a與函數(shù)f(x)的圖象無公共點,求實數(shù)a的取值范圍.

分析 (1)運用兩角差的余弦公式和二倍角公式,化簡可得f(x),再由余弦函數(shù)的單調區(qū)間,解不等式可得所求增區(qū)間;
(2)求得f(x)的最值,即可得到a的取值范圍.

解答 解:(1)函數(shù)$f(x)=cosx•cos(x-\frac{π}{3})$=cosx($\frac{1}{2}$cosx+$\frac{\sqrt{3}}{2}$sinx)
=$\frac{1+cos2x}{4}$+$\frac{\sqrt{3}}{4}$sin2x=$\frac{1}{2}$cos(2x-$\frac{π}{3}$)+$\frac{1}{4}$,
由2kπ-π≤2x-$\frac{π}{3}$≤2kπ,k∈Z,
解得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z,
即f(x)的增區(qū)間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z;
(2)由(1)可得當2x-$\frac{π}{3}$=2kπ,即x=kπ+$\frac{π}{6}$,k∈Z時,f(x)取得最大值$\frac{3}{4}$;
當2x-$\frac{π}{3}$=2kπ+π,即x=kπ+$\frac{2π}{3}$,k∈Z時,f(x)取得最小值-$\frac{1}{4}$.
由直線y=a與函數(shù)f(x)的圖象無公共點,
可得a的范圍是a>$\frac{3}{4}$或a<-$\frac{1}{4}$.

點評 本題考查三角函數(shù)的化簡和求值,考查余弦函數(shù)的圖象和性質,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.不等式組$\left\{\begin{array}{l}{x-y≥1}\\{x+3y≤3}\end{array}\right.$的解集記為D,有下面四個命題:
p1:?(x,y)∈D,2x-8y≥2;           p2:?(x,y)∈D,2x-8y<2
p3:?(x,y)∈D,2x-8y≥-1                p4:?(x,y)∈D,2x-8y<-1
其中的真命題是( 。
A.p2,p3B.p1,p4C.p1,p2D.p1,p3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖1,一個多面體的正視圖和側視圖是兩個全等的等腰直角三角形且直角邊長為2,俯視圖是邊長為2的正方形,則該多面體的表面積是( 。
A.$2+4\sqrt{2}+2\sqrt{3}$B.$2+4\sqrt{2}+\sqrt{6}$C.$2+4\sqrt{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)$f(x)=sin(\frac{π}{2}-x)$是( 。
A.奇函數(shù),且在區(qū)間$(0,\frac{π}{2})$上單調遞增B.奇函數(shù),且在區(qū)間$(0,\frac{π}{2})$上單調遞減
C.偶函數(shù),且在區(qū)間$(0,\frac{π}{2})$上單調遞增D.偶函數(shù),且在區(qū)間$(0,\frac{π}{2})$上單調遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.將函數(shù)y=cos2x的圖象向左平移$\frac{π}{4}$個單位,所得圖象對應的函數(shù)表達式為y=-sin2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)$f(x)=[{\frac{x+1}{2}}]-[{\frac{x}{2}}](x∈N)$的值域為{0,1}.(其中[x]表示不大于x的最大整數(shù),例如[3.15]=3,[0.7]=0.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=ln|ax|(a≠0),g(x)=x-3+sinx,則( 。
A.f(x)+g(x)是偶函數(shù)B.f(x)•g(x)是偶函數(shù)C.f(x)+g(x)是奇函數(shù)D.f(x)•g(x)是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.是否存在常數(shù)a,b,c使等式1•(n2-1)+2•(n2-22)+…+n•(n2-n2)=n2(an2-b)+c對一切n∈N*都成立?
并證明的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知等差數(shù)列{an}滿足:a1=2,且a22=a1a5
(1)求數(shù)列{an}的通項公式;
(2)記Sn為數(shù)列{an}的前n項和,是否存在正整數(shù)n,使得Sn>60n+800?若存在,求n的最小值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案