直線l1:x+3y-7=0、l2:kx-y-2=0與x軸、y軸的正半軸所圍成的四邊形有外接圓,則k的值等于( 。
A、-3B、3C、-6D、6
分析:由四邊形有外接圓利用坐標(biāo)軸垂直得到兩直線與坐標(biāo)軸交點的連線是直徑,根據(jù)直徑所對的圓周角為直角得到兩直線垂直,利用直線垂直時斜率乘積為-1解得k即可.
解答:解:根據(jù)直線方程求得kl1=-
1
3
,kl2=k,
因為兩直線與x軸、y軸的正半軸所圍成的四邊形有外接圓即兩直線互相垂直,
kl1kl2=-1,即-
1
3
k=-1,解得k=3
故選B
點評:考查學(xué)生靈活運用圓的性質(zhì)解決實際問題,掌握兩直線垂直時的條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:x+3y-7=0,l2:y=kx+b與x軸y軸正半軸所圍成的四邊形有外接圓,則k=
 
,b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(0,1)作一條直線 l,使它與兩已知直線l1:x-3y+10=0和l2:2x+y-8=0分別交于A、B兩點,若線段AB被P點平分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩平行直線l1:x+3y-4=0,l2:2x+6y+7=0之間的距離為
3
10
4
3
10
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知兩條直線l1:x-3y+12=0,l2:3x+y-4=0,過定點P(-1,2)作一條直線l,分別與l1,l2交于M、N兩點,若P點恰好是MN的中點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•西城區(qū)二模)已知直線l1:x-3y+1=0,l2:2x+my-1=0.若l1∥l2,則實數(shù)m=
-6
-6

查看答案和解析>>

同步練習(xí)冊答案