精英家教網 > 高中數學 > 題目詳情

【題目】若不等式ax2+5x﹣2>0的解集是
(1)求實數a的值;
(2)求不等式ax2﹣5x+a2﹣1>0的解集.

【答案】
(1)解:∵ax2+5x﹣2>0的解集是 ,

∴a<0, ,2是ax2+5x﹣2=0的兩根

解得 a=﹣2;


(2)解:則不等式ax2﹣5x+a2﹣1>0可化為

﹣2x2﹣5x+3>0

解得

故不等式ax2﹣5x+a2﹣1>0的解集


【解析】(1)由二次不等式的解集形式,判斷出 ,2是相應方程的兩個根,利用韋達定理求出a的值.(2)由(1)我們易得a的值,代入不等式ax2﹣5x+a2﹣1>0易解出其解集.
【考點精析】解答此題的關鍵在于理解解一元二次不等式的相關知識,掌握求一元二次不等式解集的步驟:一化:化二次項前的系數為正數;二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數的圖象;五解集:根據圖象寫出不等式的解集;規(guī)律:當二次項系數為正時,小于取中間,大于取兩邊.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)ax21(a>0),g(x)x3bx.

(1)若曲線yf(x)與曲線yg(x)在它們的交點(1,c)處具有公共切線,a,b的值;

(2)a3,b=-9,若函數f(x)g(x)在區(qū)間[k,2]上的最大值為28,k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn , a1=1,an+1= Sn . 求證:
(1)數列{ }成等比;
(2)Sn+1=4an

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點,橢圓 的離心率為是橢圓的右焦點,直線的斜率為為坐標原點.

(1)求的方程;

(2)設過點的動直線相交于兩點,當的面積最大時,求的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】微信是現代生活中進行信息交流的重要工具.據統(tǒng)計,某公司200名員工中90%的人使用微信,其中每天使用微信時間在一小時以內的有60人,其余的員工每天使用微信時間在一小時以上,若將員工分成青年(年齡小于40歲)和中年(年齡不小于40歲)兩個階段,那么使用微信的人中75%是青年人.若規(guī)定:每天使用微信時間在一小時以上為經常使用微信,那么經常使用微信的員工中都是青年人.

(1)若要調查該公司使用微信的員工經常使用微信與年齡的關系,列出并完成2×2列聯表:

(2)由列聯表中所得數據判斷,是否有99.9%的把握認為“經常使用微信與年齡有關”?

(3)采用分層抽樣的方法從“經常使用微信”的人中抽取6人,從這6人中任選2人,求選出的2人,均是青年人的概率.

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過直角坐標平面xOy中的拋物線y2=2px(p>0)的焦點F作一條傾斜角為的直線與拋物線相交于A,B兩點.

(1)用p表示線段AB的長;

(2)若,求這個拋物線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司購買了A,B,C三種不同品牌的電動智能送風口罩.為了解三種品牌口罩的電池性能,現采用分層抽樣的方法,從三種品牌的口罩中抽出25臺,測試它們一次完全充電后的連續(xù)待機時長,統(tǒng)計結果如下(單位:小時):

A

4

4

4.5

5

5.5

6

6

B

4.5

5

6

6.5

6.5

7

7

7.5

C

5

5

5.5

6

6

7

7

7.5

8

8

(Ⅰ)已知該公司購買的C品牌電動智能送風口罩比B品牌多200臺,求該公司購買的B品牌電動智能送風口罩的數量;

(Ⅱ)從A品牌和B品牌抽出的電動智能送風口罩中,各隨機選取一臺,求A品牌待機時長高于B品牌的概率;

(Ⅲ)再從A,BC三種不同品牌的電動智能送風口罩中各隨機抽取一臺,它們的待機時長分別是a,b,c(單位:小時).這3個新數據與表格中的數據構成的新樣本的平均數記為,表格中數據的平均數記為.若,寫出a+b+c的最小值(結論不要求證明).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列滿足,

(1)設,求數列的通項公式;

(2)設,求數列的前n項和為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= sinωx+cosωx(ω>0)的圖象與x軸交點的橫坐標構成一個公差為 的等差數列,把函數f(x)的圖象沿x軸向左平移 個單位,得到函數g(x)的圖象.若在區(qū)間[0,π]上隨機取一個數x,則事件“g(x)≥ ”發(fā)生的概率為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案