如圖,四棱柱ABCD—A1B1C1D1中,側棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.

(1)證明B1C1⊥CE;
(2)求二面角B1­CE­C1的正弦值;
(3)設點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.
(1)見解析  (2)  (3)
如圖,以點A為原點,以AD,AA1,AB所在直線為x軸、y軸、z軸建立空間直角坐標系,依題意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).
(1)證明:易得=(1,0,-1),=(-1,1-1),于是·=0,所以B1C1⊥CE.
(2)=(1,-2,-1).
設平面B1CE的法向量m=(x,y,z),
,即消去x,得y+2z=0,
不妨令z=1,可得一個法向量為m=(-3,-2,1).
由(1)知,B1C1⊥CE,又CC1⊥B1C1,
可得B1C1⊥平面CEC1
=(1,0,-1)為平面CEC1的一個法向量.
于是cos〈m,〉=,從而sin〈m,〉=.
所以二面角B1—CE—C1的正弦值為.
(3)=(0,1,0),=(1,1,1).
=λ=(λ,λ,λ),0≤λ≤1,有=(λ,λ+1,λ).
可取=(0,0,2)為平面ADD1A1的一個法向量.
設θ為直線AM與平面ADD1A1所成的角,則
sin θ=|cos〈,〉|=
,
于是,解得λ=(負值舍去),
所以AM=.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,為矩形,平面平面.
求證:

為何值時,四棱錐的體積最大?并求此時平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐中,⊥底面,底面為菱形,點為側棱上一點.
(1)若,求證:平面; 
(2)若,求證:平面⊥平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐中, ,,側面為等邊三角形..

(1)證明:
(2)求AB與平面SBC所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P—ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC=AD=1,CD=.

(1)若點M是棱PC的中點,求證:PA∥平面BMQ;
(2)若二面角M—BQ—C為30°,設PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)

如圖,在三棱柱中,底面,,E、F分別是棱的中點.
(1)求證:AB⊥平面AA1 C1C;
(2)若線段上的點滿足平面//平面,試確定點的位置,并說明理由;
(3)證明:⊥A1C.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

平面α∥平面β的一個充分條件是( 。
A.存在一條直線a,a∥α,a∥β
B.存在一條直線a,a?α,a∥β
C.存在兩條平行直線a,b,a?α,b?β,a∥β,b∥α
D.存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設l是直線,α,β是兩個不同的平面(    )
A.若l//α,l//β,則α//β
B.若l//α,l⊥β,則α⊥β
C.若α⊥β,l⊥α,則l⊥β
D.若α⊥β,l//α,則l⊥β

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是兩條不同的直線,是三個不同的平面,則下列命題中正確命題是(     )
A.若,則
B.若,,則
C.若,則
D.若

查看答案和解析>>

同步練習冊答案