等腰△ABC的底邊數(shù)學公式,高CD=3,點E是線段BD上異于點B,D的動點.點F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.
(Ⅰ)證明EF⊥平面PAE;
(Ⅱ)記BE=x,V(x)表示四棱錐P-ACFE的體積,求V(x)的表達式.

(Ⅰ)證明:∵EF⊥AB,∴∠BEF=∠PEF=90°,故EF⊥PE,
∵EF⊥AB.AB∩PE=E,∴EF⊥平面PAE.…(6分)
(Ⅱ)解:∵PE⊥AE,PE⊥EF,∴PE⊥平面ABC,即PE為四棱錐P-ACFE的高.
由高線CD及EF⊥AB得EF∥CD,∴,
由題意知.…(9分)
=
∵PE=EB=x,
.…(12分)
分析:(Ⅰ)利用線面垂直的判定定理證明線面垂直,即證EF⊥PE,利用EF⊥AB,可得結(jié)論;
(Ⅱ)證明PE為四棱錐P-ACFE的高,求出的面積,即可得到四棱錐P-ACFE的體積.
點評:本題考查線面垂直,考查四棱錐體積的計算,掌握線面垂直的判定,正確計算體積是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,等腰△ABC的底邊AB=6
6
,高CD=3,點E是線段BD上異于點B、D的動點,點F在BC邊上,且EF⊥AB,現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE,記BE=x,V(x)表示四棱柱P-ACFE的體積.
(1)求證:面PEF⊥面ACFE;
(2)求V(x)的表達式,并求當x為何值時V(x)取得最大值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,等腰△ABC的底邊AB=6
6
,高CD=3,點E是線段BD上異于點B,D的動點,點F在BC邊上,且EF⊥AB,現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AC,記BE=x,V(x)表示四棱錐P-ACFE的體積.
(1)求V(x)的表達式;
(2)當x為何值時,V(x)取得最大值?
(3)當V(x)取得最大值時,求異面直線AC與PF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知等腰△ABC的底邊BC=3,頂角為120°,D是BC邊上一點,且BD=1.把△ADC沿AD折起,使得平面CAD⊥平面ABD,連接BC形成三棱錐C-ABD.
(Ⅰ) ①求證:AC⊥平面ABD;②求三棱錐C-ABD的體積;
(Ⅱ) 求AC與平面BCD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等腰△ABC的底邊AB=6
6
,高CD=3,點E是線段BD上異于點B,D的動點.點F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.
(Ⅰ)證明EF⊥平面PAE;
(Ⅱ)記BE=x,V(x)表示四棱錐P-ACFE的體積,求V(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上高縣模擬)如圖,等腰△ABC的底邊AB=6,高CD=3,點E是線段BD上異于點B、D的動點,點F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE,記BE=x,V(x)表示四棱錐P-ACFE的體積.
(1)證明:CD⊥平面APE;
(2)設(shè)G是AP的中點,試判斷DG與平面PCF的關(guān)系,并證明;
(3)當x為何值時,V(x)取得最大值.

查看答案和解析>>

同步練習冊答案